PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Czy niskie dawki promieniowania jonizującego są szkodliwe?

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Can low level ionizing radiation do us harm?
Języki publikacji
PL
Abstrakty
PL
Wiele już opublikowanych i nowo pojawiające się wyniki badań wyraźnie wskazują na korzystne, prozdrowotne działanie niskich dawek promieniowania jonizującego (p.j.). Dane te przeczą dominującej opinii, że każda ekspozycja na p.j., nawet w najmniejszej dawce, może wywołać nowotwór i powinna być unikana. Co gorsza, opinia ta, w postaci tzw. hipotezy LNT (linear, no threshold), stanowi podstawę regulacji obowiązujących w ochronie radiologicznej. W niniejszym artykule, po krótkim przedstawieniu genezy modelu LNT, przedstawiono przekonujące wyniki analiz epidemiologicznych i badań doświadczalnych oraz leczenia nowotworów u ludzi, które wyraźnie świadczą o braku podstaw naukowych dla tego modelu. Podano także przy kłady brzemiennych w skutki konsekwencji stosowania hipotezy LNT w praktyce. Konkluzją jest postulat, aby porzucić fałszywą i szkodliwą „ideologię” LNT, która „więzi nas w czasie przeszłym”, utrwala radiofobię i stanowi przeszkodę w powszechnym stosowaniu nieszkodliwych, a często korzystnych dla zdrowia ekspozycji w niskich dawkach p.j.
EN
The linear no-threshold (LNT) hypothesis of cancer risk assessment resulting from exposure to ionizing radiation (IR) constitutes the basis of our radiological protection philosophy and regulations. This hypothesis assumes that each absorbed dose of IR, no matter how small, is potentially carcinogenic and that the effects of low doses (not exceeding 100 mGy and 0.1 mGy/min for acute and chronic exposures, respectively) can be extrapolated from those of high doses of IR. However, evidence accumulated over many years clearly indicates that absorption of low radiation doses does not cause harm and often promotes health. In this review I provide examples of the results of both epidemiological analyses and controlled experimental studies which indicate that there is a qualitative difference between the effects of low vs. high doses of IR and that the LNT tenet lacks scientific justification. I also outline the genesis and reasons for its persistence as well as numerous negative consequences of using the latter and conclude it’s high time to replace the LNT dogma with a scientifically-based relationship such as a hormetic or a threshold dose-response model.
Rocznik
Tom
Strony
11--21
Opis fizyczny
Bibliogr. 48 poz., fot.,
Twórcy
  • Rada ds. Bezpieczeństwa Jądrowego i Ochrony Radiologicznej przy Prezesie Państwowej Agencji Atomistyki
Bibliografia
  • [1] Calabrese EJ. On the origins of the linear no-threshold (LNT) dogma by means of untruths, artful dodges and blind faith. Environ. Res. 142: 432–442, 2015.
  • [2] Calabrese EJ, Baldwin LA. Radiation hormesis: the demise of a legitimate hypothesis. Hum Exp Toxicol. 19(1):76-84, 2000. doi: 10.1191/096032700678815611.
  • [3] Calabrese EJ. Ethical failings: The problematic history of cancer risk assessment. Environ Res 193: 110582, 2021. doi: 10.1016/j.envres.2020.110582.
  • [4] Cardarelli JJ II, Ulsh BA. It Is Time to Move Beyond the Linear No-Threshold Theory for Low-Dose Radiation Protection. Dose Response 16(3):1559325818779651, 2018. doi: 10.1177/1559325818779651.
  • [5] Cohen BL. Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys. 68(2): 157-174, 1995. doi: 10.1097/00004032- 199502000-00002.
  • [6] Cohen BL. Test of the linear-no threshold theory: rationale for procedures. Dose Response 3(3):369-390, 2006. doi: 10.2203/dose-response.003.03.007.
  • [7] Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska EM, Marciniak M, Janiak MK. Single low doses of X-Rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat. Res. 161: 335-340, 2004. doi: 10.1667/rr3123.
  • [8] David E, Wolfson M, Fraifeld VE. Background radiation impacts human longevity and cancer mortality: reconsidering the linear no-threshold paradigm. Biogerontology 22: 189–195, 2021. doi.org/10.1007/ s10522-020-09909-4.
  • [9] Dobrzyński L, Janiak MK, Strupczewski A, Waligórski M. O konieczności zmiany paradygmatu ochrony radiologicznej - komentarz SARI - Stowarzyszenia Uczonych dla Rzetelnej Informacji o Promieniowaniu. Scientists for Accurate Radiation Information, On the need to replace the present paradigm of radiation protection - comments by SARI (Scientists for Accurate Radiation Information). Post Tech Jądr. 60(3): 2-11, 2017.
  • [10] Dobrzyński L, Fornalski KW, Reszczyńska J. Meta-analysis of thirty-two case-control and two ecological radon studies of lung cancer, J Rad Res. 59: 149-163, 2018. doi: 10.1093/jrr/rrx061.
  • [11] Doll R. Mortality of British Radiologists: A Lecture Note. J. Radiat. Res., 46: 123-129, 2005.
  • [12] Doss M. Evidence supporting radiation hormesis in atomic bomb survivor cancer mortality data. Dose Response 10(4): 584-592, 2012. doi: 10.2203/dose-response.12-023.Doss.
  • [13] Golden R, Bus J, Calabrese E. An examination of the linear no-threshold hypothesis of cancer risk assessment: Introduction to a series of reviews documenting the lack of biological plausibility of LNT. Chem Biol Interact. 301: 2-5, 2019.
  • [14] Grant EJ, Furukawa K, Sakata R, Sugiyama H, Sadakane A, Takahashi I, Utada M, Shimizu Y, Ozasa K. Risk of death among children of atomic bomb survivors after 62 years of follow-up: a cohort study. Lancet Oncol. 16(13): 1316-23, 2015. doi: 10.1016/S1470-2045(15)00209-0.
  • [15] Hansen CL, Hingorani R. LNT RIP: It is time to bury the linear no threshold hypothesis. J Nucl Cardiol. 26(4): 1358- 1360, 2019. doi: 10.1007/s12350-019-01646-7.
  • [16] Hashimoto S, Shirato H, Hosokawa M, Nishioka T, Kuramitsu Y, Matushita K, Kobayashi M, Miyasaka K The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor -bearing rats. Radiat Res. 151(6):717-124, 1999.
  • [17] Hosoi Y, Sakamoto K. Suppressive effect of low dose total body irradiation on lung metasta-sis: dose dependency and effective period. Radiother Oncol. 26(2): 177-179, 1993. doi: 10.1016/0167-8140(93)90101-d.
  • [18] CRP [International Commission on Radiological Protection] ICRP publication 9: Recommendations of the ICRP, 1966: http://www.icrp.org/publication. asp?id= ICRP%20 Publication%209].
  • [19] ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37: 2-4, 2007.
  • [20] Ina Y, Tanooka H, Yamada T, Sakai K. Suppression of thymic lymphoma induction by life-long low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat Res. 163(2): 153-158, 2005. doi: 10.1667/rr3289.
  • [21] Ina Y, Sakai K. Further study of prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice: effects of whole-life irradiation. Radiat Res. 163(4): 418-423, 2005. doi: 10.1667/rr3316.
  • [22] Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ. Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother 66: 819-832, 2017. doi.org/10.1007/s00262-017-1993-z.
  • [23] Janiak MK, Pocięgiel M, Welsh JS. Time to rejuvenate ultra-low dose whole-body radio-therapy of cancer. Crit Rev Oncol Hematol. 160:103286, 2021. doi: 10.1016/j.critrevonc. 2021.103286.
  • [24] Jaworowski Z. Observations on the Chernobyl Disaster and LNT. Dose Response 8(2): 148-71, 2010a. doi: 10.2203/ dose-response.09-029.Jaworowski.
  • [25] Jaworowski Z. Radiation hormesis—a remedy for fear. Hum Exp Toxicol. 29(4): 263-270, 2010b. doi: 10.1177/0960327110363974.
  • [26] Kaminski CY, Dattoli M, Kaminski JM. Replacing LNT: The Integrated LNT-Hormesis Model. Dose Response 8(2): 1559325820913788, 2020. doi: 10.1177/1559325820913788.
  • [27] Liu SZ, Liu WH, Sun JB. Radiation hormesis: its expression in the immune system. Health Phys. 52(5): 579-583, 1987. doi: 10.1097/00004032-198705000-00008.
  • [28] Lorenz E, Hollcroft WJ, Miller E, Congdon CC, Schweisthal R. Long-term effects of acute and chronic irradiation in mice. I. Survival and tumor incidence following chronic irradiation of 0.11 r per day. J Natl Cancer Inst. 15(4): 1049– 1058, 1955.
  • [29] Luckey TD. Nurture with ionizing radiation: a provocative hypothesis. Nutr Cancer 34(1): 1-11, 1999. doi: 10.1207/ S15327914NC340101.
  • [30] Luckey TD. Radiation hormesis: the good, the bad, and the ugly. Dose-Resp. 4(3): 169–190, 2006.doi: 10.2203/dose-response.06-102.luckey
  • [31] Luckey TD. Atomic bomb health benefits. Dose-Response, 6: 369–382, 2008. doi: 10.2203/dose-response.08-009. Luckey.
  • [32] Miller AB, Howe GR, Sherman GJ, Lindsay JP, Yaffe MJ, Dinner PJ, Risch HA, Preston DL. Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis. N Engl J Med. 321(19): 1285-1289, 1989. doi: 10.1056/NEJM198911093211902
  • [33] Muller HJ. Artificial transmutation of the gene. Science 66(1699): 84–87, 1927.
  • [34]Nowosielska EM, Cheda A, Wrembel-Wargocka J, Janiak MK. Anti-neoplastic and immunostimulatory effects of low-dose X-ray fractions in mice. Int. J. Radiat. Biol. 87(2): 202-212, 2011. doi: 10.3109/09553002.2010.519422.
  • [35] Nowosielska EM, Cheda A, Pociegiel M, Cheda L, Szymański P, Antoni Wiedlocha A.Effects of a unique combination of the whole-body low dose radiotherapy with inactivation of two immune checkpoints and/or a heat shock protein on the transplantable lung cancer in Mice. Int J Mol Sci. 22(12): 6309, 2021. doi: 10.3390/ijms22126309.
  • [36] Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K. Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: An overview of cancer and noncancer diseases. Radiat Res. 177(3): 229–243, 2012. doi: 10.1667/rr2629.1.
  • [37] Preston RJ, Boice JD Jr, Brill AB, Chakraborty R, Conolly R, Hoffman FO, Hornung RW, Kocher DC, Land CE, Shore RE, Woloschak GE. Uncertainties in estimating health risks associated with exposure to ionising radiation. J Radiol Prot. 33(3): 573-588, 2013. doi: 10.1088/0952-4746/33/3/573.
  • [38] Pylak M, Fornalski KW, Reszczyńska J, Kukulski P, Waligórski MPR, Dobrzyński L. Analysis of indoor radon data using Bayesian, random binning and maximum entropy methods. Dose Response 19(2):15593258211009337, 2021. doi: 10.1177/15593258211009337.
  • [39] Shore RE, Beck HL, Boice JD Jr, Caffrey EA, Davis S, Grogan HA, Mettler FA Jr, Preston RJ, Till JE, Wakeford R, Walsh L, Dauer LT. Recent epidemiologic studies and the linear no-threshold model for radiation protection-considerations regarding NCRP Commentary 27. Health Phys. 116: 235–246, 2019. doi.org/10.1097/HP.0000000000001015.
  • [40] Sutou S. Low-dose radiation from A-bombs elongated lifespan and reduced cancer mortality relative to un-irradiated individuals. Genes Environ. 40: 26, 2018. doi: 10.1186/s41021-018-0114-3.
  • [41] Suzuki N, Mizukoshi T. Effect of low doses of whole body irradiation on spontaneous lung metastasis of NFSA 2ALM1 mouse tumors. Radiat Med. 5(6): 212-214. 1987.
  • [42] Takahashi A, Ohnishi T. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat. J Radiat Res. 50(5): 385-393, 2009. doi: 10.1269/jrr.09048s. Epub 2009 Jun 13.
  • [43] Thompson RE, Nelson DF, Popkin JH, Popkin Z. Case-control study of lung cancer risk from residential radon exposure in Worcester county, Massachusetts. Health Phys. 94(3): 228-241, 2008. doi: 10.1097/01.HP.0000288561.53790.5f.
  • [44] Tubiana M, Aurengo A., Averbeck D., Bonnin A, Le Guen B, Masse R, Monier R, Valleron A-J, de Vathaire F. Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation. Académie Nationale de Médecine, Institut de France Académie de Science. Joint report no. 2, March 30, 2005.
  • [45] Ulsh BA and Calabrese EJ. Time for Radiation Regulation to Evolve. The Cato Institute’s magazine, Regulation, Fall 2019.
  • [46] UNSCEAR. Sources and Effects of Ionizing Radiation. Vol. II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly, with scientific annexes. Annex J. United Nations sales publication E.00.IX.4. United nations, New York, 2000.
  • [47] UNSCEAR. Sources and Effects of Ionizing Radiation. Vol. II: Effects: Scientific Annexes C, D and E. UNSCEAR 2008 Re port. United Nations Scientific Committee on the Effects of Atomic Radiation. Annex D. United Nations sales publication E.00.IX.4. United nations, New York, 2011.
  • [48] UNSCEAR. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly and Scientific Annexes A and B. UNSCEAR 2012 Report. United Nations Scientific Committee on the Effects of Atomic Radiation. Annex A. United Nations sales publication E.00.IX.4. United nations, New York, 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9de2b4d-09a4-4bf5-9753-c27f968cd6ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.