Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The rapid expansion of the photovoltaic solar system market has resulted in a significant increase in waste generated during installation, presenting a substantial environmental challenge. In response, the adoption of environmentally sustainable materials from various industries can play a crucial role in mitigating the effects of the ongoing climate crisis. This study explores the use of plastic polymer-based materials, including recycled and nanomaterials, for supporting photovoltaic solar panels. A preliminary structural design was subjected to static analysis, which facilitated the identification of a mechanically appropriate material for topological optimization. This optimization process led to a reduction in material usage and the proposal of three alternative support models. Among these, structures featuring hexagonal perforations demonstrated enhanced mechanical properties, achieving a mass reduction of up to 17.89%. The results of this study underscore the potential for incorporating recycled materials in the design of structural supports for photovoltaic solar panels, offering a viable pathway toward more sustainable photovoltaic infrastructure.
Wydawca
Rocznik
Tom
Strony
167--180
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
- Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru
autor
- Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru
autor
- Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru
autor
- Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru
autor
- Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru
autor
- Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru
Bibliografia
- 1. Holechek J. L., Geli H. M. E., Sawalhah M. N., Valdez R. A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 2022; 14: 4792. http://dx.doi.org/10.3390/SU14084792.
- 2. Jiang F., Huang W., Yang J., Duan H. Retailer involvement in eco-conscious consumer-oriented carbon footprint reduction, European Journal of Operational Research 2025; 322: 795–811. http://dx.doi.org/10.1016/j.ejor.2024.10.030.
- 3. Rumsa M., John M., Biswas W. Global steel decarbonization roadmaps: Near‑zero by 2050, Environmental Impact Assessment Review 2025; 112: 107807. http://dx.doi.org/10.1016/j.eiar.2025.107807.
- 4. International Energy Agency (IEA). Tracking Clean Energy Progress 2023, Assessing critical energy technologies for global clean energy transitions [Internet]. Paris: International Energy Agency; 2023 [cited 2024‑12‑19]. Available from: https://www.iea.org/reports/tracking-clean-energy-progress-2023.
- 5. Chowdhury M. d. S., Rahman K. S., Chowdhury T., Nuthammachot N., Techato K., Akhtaruzzaman M. d., et al. An overview of solar photovoltaic panels’ end-of-life material recycling, Energy Strategy Reviews 2020; 27: 100431. http://dx.doi.org/10.1016/j.esr.2019.100431.
- 6. Tammaro M., Salluzzo A., Rimauro J., Schiavo S., Manzo S. Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels, Journal of Hazardous Materials 2016; 306: 395–405. http://dx.doi.org/10.1016/j.jhazmat.2015.12.018.
- 7. Maghraby Y. R., Ibrahim A. H., Tayel A., Mohamed El‑Said Azzazy H., Shoeib T. Towards sustainability via recycling solar photovoltaic panels, Solar Energy 2025; 285: 113085. http://dx.doi.org/10.1016/j.solener.2024.113085.
- 8. Trapani K., Redón Santafé M. A review of floating photovoltaic installations: 2007–2013, Progress in Photovoltaics: Research and Applications 2014; 23: 524–532. http://dx.doi.org/10.1002/pip.2466.
- 9. Rubino F., Nisticò A., Tucci F., Carlone P. Marine application of fiber reinforced composites: A review, Journal of Marine Science and Engineering 2020; 8: 26. http://dx.doi.org/10.3390/jmse8010026.
- 10. Yousuf H., Khokhar M. Q., Zahid M. A., Kim J., Kim Y., Cho E. C., et al. A review on floating photovoltaic technology (FPVT), Current Photovoltaic Research 2020; 8(3): 67–78. https://doi.org/10.21218/CPR.2020.8.3.067.
- 11. Koondhar M. A., Albasha L., Mahariq I., Graba B. B., Touti E. Reviewing floating photovoltaic (FPV) technology for solar energy generation, Energy Strategy Reviews 2024; 54: 101449. http://dx.doi.org/10.1016/j.esr.2024.101449.
- 12. Claus R., López M. Key issues in the design of floating photovoltaic structures for the marine environment, Renewable and Sustainable Energy Reviews 2022; 164: 112502. http://dx.doi.org/10.1016/j.rser.2022.112502.
- 13. Yousaf A., Al Rashid A., Polat R., Koç M. Potential and challenges of recycled polymer plastics and natural waste materials for additive manufacturing, Sustainable Materials and Technologies 2024; 41: e01103. http://dx.doi.org/10.1016/j.susmat.2024.e01103.
- 14. Liu Z., Lei Q., Xing S. Mechanical characteristics of wood, ceramic, metal and carbon fiber‑based PLA composites fabricated by FDM, Journal of Materials Research and Technology 2019; 8: 3741–3751. http://dx.doi.org/10.1016/j.jmrt.2019.06.034.
- 15. Ajay Kumar M., Khan M. S., Mishra S. B. Effect of fused deposition machine parameters on tensile strength of printed carbon fiber reinforced PLA thermoplastics, Materials Today: Proceedings 2020; 27: 1505–1510. http://dx.doi.org/10.1016/j.matpr.2020.03.033.
- 16. Jagadeesh P., Puttegowda M., Thyavihalli Girijappa Y. G., Rangappa S. M., Siengchin S. Effect of natural filler materials on fiber reinforced hybrid polymer composites: An overview, Journal of Natural Fibers 2020; 19: 4132–4147. http://dx.doi.org/10.1080/15440478.2020.1854145.
- 17. Patti A., Barretta R., Marotti de Sciarra F., Mensitieri G., Menna C., Russo P. Flexural properties of multi-wall carbon nanotube/polypropylene composites: Experimental investigation and nonlocal modeling, Composite Structures 2015; 131: 282–289. http://dx.doi.org/10.1016/j.compstruct.2015.05.002.
- 18. Zidan H. M., Abdelrazek E. M., Abdelghany A. M., Tarabiah A. E. Characterization and some physical studies of PVA/PVP filled with MWCNTs, Journal of Materials Research and Technology 2019; 8: 904–913. http://dx.doi.org/10.1016/j.jmrt.2018.04.023.
- 19. Vicuña L., Jaramillo‑Fierro X., Cuenca P. E., Godoy‑Paucar B., Inga‑Lafebre J. D., Chavez Torres J. L., et al. Evaluation of the effectiveness of geogrids manufactured from recycled plastics for slope stabilization — A case study, Polymers 2024; 16: 1151. http://dx.doi.org/10.3390/polym16081151.
- 20. Azeez A., Mohammed S. SolidWorks simulation of mechanical properties of recycled plastics/nanocomposite faces sandwich panels, ARO – The Scientific Journal of Koya University 2018; 6: 65–70. http://dx.doi.org/10.14500/aro.10394.
- 21. Islam M. A., Mobarak M. H., Rimon M. I. H., Al Mahmud M. Z., Ghosh J., Ahmed M. M. S., et al. Additive manufacturing in polymer research: Advances, synthesis, and applications, Polymer Testing 2024; 132: 108364. http://dx.doi.org/10.1016/j.polymertesting.2024.108364.
- 22. Akbar I., El Hadrouz M., El Mansori M., Tarfaoui M. Investigation of thermo-mechanical shape memory signatures of 3D printed and injection molded polymers, CIRP Journal of Manufacturing Science and Technology 2023; 41: 277–291. http://dx.doi.org/10.1016/j.cirpj.2022.12.011.
- 23. Alex Y., Divakaran N. C., Pattanayak I., Lakshyajit B., Ajay P. V., Mohanty S. Comprehensive study of PLA material extrusion 3D printing optimization and its comparison with PLA injection molding through life cycle assessment, Sustainable Materials and Technologies 2025; 43: 01222. http://dx.doi.org/10.1016/j.susmat.2024.e01222.
- 24. Zhang H., Lang C., Zhang R. Life cycle carbon footprint analysis of suitcase production: Impact of material variations, size differences, and geographical factors, Journal of Cleaner Production 2025; 496: 145081. http://dx.doi.org/10.1016/j.jclepro.2025.145081.
- 25. Elduque A., Elduque D., Javierre C., Fernández Á., Santolaria J. Environmental impact analysis of the injection molding process: analysis of the processing of high-density polyethylene parts, Journal of Cleaner Production 2015; 108: 80–89. http://dx.doi.org/10.1016/j.jclepro.2015.07.119.
- 26. Sarma L. S., Mallikarachchi C., Herath S. Design-informed generative modeling of skeletal structures using structural optimization, Computers & Structures 2024; 302: 107474. http://dx.doi.org/10.1016/j.compstruc.2024.107474.
- 27. Dong Y., Hussain I., He S. Structural topology optimization of aircraft wing leading edge fabricated of multilayer composites, Aerospace Science and Technology 2025; 159: 109993. http://dx.doi.org/10.1016/j.ast.2025.109993.
- 28. Zheng B. Analysis of static and dynamic characteristics and lightweight design of titanium alloy frame, Manufacturing Technology, Jan Evangelista Purkyně University in Ústí nad Labem 2024; 24: 507–519. http://dx.doi.org/10.21062/mft.2024.053.
- 29. Chidambaram R. K., Pedapati P. R., Kanna P. R., Taler D., Sobota T., Taler J. Structural assessment of electric two‑wheeler battery enclosure: thermal and structural study, Journal of Thermal Analysis and Calorimetry 2024. http://dx.doi.org/10.1007/s10973-024-13458-0.
- 30. Prabhuram T., Sundaram S. C. M., Jegadeeswer S., Kannan V. S. Static analysis of different spoke structure of airless and conventional tyre, IOP Conference Series: Materials Science and Engineering 2020; 923: 012017. http://dx.doi.org/10.1088/1757-899X/923/1/012017.
- 31. Bata A., Gerse P., Kun K., Slezák E., Ronkay F. Effect of recycling on the time- and temperature-dependent mechanical properties of PP/MWCNT composite liner materials, Results in Engineering 2025; 25: 104150. http://dx.doi.org/10.1016/j.rineng.2025.104150.
- 32. Dassault Systèmes. Simulation, topology study: SIMP method for topology optimization [Internet]. France: Dassault Systèmes; 2025 [cited 2025‑01‑03]. Available from: https://help.solidworks.com/2025/spanish/SolidWorks/cworks/c_simp_method_topology.htm?verRedirect=1#.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9de108e-3c62-4579-8a43-d20e095592e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.