Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, electrostatic self-assembled carbon nanotube (CNT)/nanocarbon black (NCB) composite is employed as filler for developing multifunctional cement-based composites. The performances of the composites with different content of filler are investigated. The electrochemical impedance spectroscopy and equivalent circuit are used to explore the conductive and mechanical mechanisms of the composites. Experimental results indicate that the compressive strength and elasticity modulus of the composites sharply decrease when the filler content exceeds 0.77 vol.%. The percolation threshold zone of the electrical conductivity of the composites ranges from 0.39 vol.% to 1.52 vol.%. The piezoresistive properties of the composites with 2.40 vol.% filler are stable and sensitive, and the maximum fractional change of electrical resistivity is 25.4% when the stress amplitude is 10 MPa. The composites feature sensitive and linear thermal resistance effect when the filler content is 0.77 vol.%. Electromagnetic shielding effectiveness of the composites with 2.40 vol.% filler at 18 GHz is 5.0 dB, which is 2.2 times of that of the control samples. The composites exhibit high absorbing electromagnetic wave performances in the frequency range of 2–18 GHz, and the minimum reflectivity reaches −23.08 dB with 0.77 vol.% filler.
Czasopismo
Rocznik
Tom
Strony
354--364
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor
- School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China
autor
- Department of Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA
- School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China
autor
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
autor
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Bibliografia
- [1] B.G. Han, Y.Y. Wang, S.F. Dong, L.Q. Zhang, S.Q. Ding, X. Yu, J. P. Ou, Smart concretes and structures: a review, Journal of Intelligent Material Systems and Structures 26 (11) (2015) 1303–1345.
- [2] S. Gupta, J.G. Gonzalez, K.J. Loh, Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces, Structural Health Monitoring (2016), http://dx.doi.org/10.1177/ 1475921716643867.
- [3] H.K. Kim, I.S. Park, H.K. Lee, Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio, Composite Structures 116 (2014) 713–719.
- [4] B. Han, X. Yu, J. Ou, in: K. Gopalakrishnan, B. Birgisson, P. Taylor, N.O. Attoh-Okine (Eds.), Nanotechnology in civil infrastructure, Springer, Berlin, 2011 1–47.
- [5] S.F. Dong, B.G. Han, J.P. Ou, Z. Li, L.Y. Han, X. Yu, Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete, Cement and Concrete Composites 72 (2016) 48–65.
- [6] K.J. Loh, J. Gonzalez, Cementitious composites engineered with embedded carbon nanotube thin films for enhanced sensing performance, Journal of Physics: Conference Series 628 (2015) 012042.
- [7] B.G. Han, L.Q. Zhang, S.W. Sun, X. Yu, X.F. Dong, T.J. Wu, J.P. Ou, Electrostatic self-assembly CNT/NCB composite fillers reinforced cement-based materials with multifunctionality, Composites Part A: Applied Science and Manufacturing 79 (2015) 103–115.
- [8] B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review, Measurement 59 (2015) 110–128.
- [9] W. Wang, H.Z. Dai, S.G. Wu, Mechanical behavior and electrical property of CFRC- strengthened RC beams under fatigue and monotonic loading, Materials Science and Engineering A 479 (2008) 191–196.
- [10] B.G. Han, X.C. Guan, J.P. Ou, Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors, Sensors and Actuators: A physical 135 (2) (2007) 360–369.
- [11] M. Chiarello, R. Zinno, Electrical conductivity of self-monitoring CFRC, Cement and Concrete Composites 27 (4) (2005) 463–469.
- [12] B.G. Han, B.Z. Han, J.P. Ou, Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity, Sensors and Actuators A: Physical 149 (1) (2009) 51–55.
- [13] J. Chen, C. Poon, Photocatalytic activity of titanium dioxide modified concrete materials – influence of utilizing recycled glass cullets as aggregates, Journal of Environmental Management 90 (11) (2009) 3436–3442.
- [14] M.M. Ballari, M. Hunger, G. Hüsken, H.J.H. Brouwers, NOx photocatalytic degradation employing concrete pavement containing titanium dioxide, Applied Catalysis B: Environmental 95 (3) (2010) 245–254.
- [15] M.M. Ballari, Q.L. Yu, H.J.H. Brouwers, Experimental study of the NO and NO2 degradation by photocatalytically active concrete, Catalysis Today 161 (1) (2011) 175–180.
- [16] G. Hüsken, M. Hunger, H.J.H. Brouwers, Experimental study of photocatalytic concrete products for air purification, Building and Environment 44 (12) (2009) 2463–2474.
- [17] R.K. Nath, M.F.M. Zain, A.A.H. Kadhum, A.B.M.A. Kaish, An investigation of LiNbO3 photocatalyst coating on concrete surface for improving indoor air quality, Construction and Building Materials 54 (2014) 348–353.
- [18] K. Goto, S. Terao, Structures and humidity controlling performances of zeolite-cement hardened body, Journal of the Ceramic Society of Japan 113 (11) (2005) 739–742.
- [19] G. Lee, D. Han, M. Han, C. Han, H. Son, Combining polypropylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete, Construction and Building Materials 34 (2012) 313–320.
- [20] K. Zhang, B.G. Han, X. Yu, Nickel particle based electrical resistance heating cementitious composites, Cold Regions Science and Technology 69 (1) (2011) 64–69.
- [21] C.Y. Tuan, S. Yehia, Evaluation of electrically conductive concrete containing carbon products for deicing, ACI Materials Journal 101 (4) (2004) 287–293.
- [22] C.Y. Tuan, Electrical resistance heating of conductive concrete containing steel fibers and shavings, Materials Journal 101 (1) (2004) 65–71.
- [23] B.G. Han, X. Yu, J.P. Ou, Self-Sensing Concrete in Smart Structures, Elsevier, 2014.
- [24] Y.W. Dai, M.Q. Sun, C.G. Liu, Z.Q. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites, Cement and Concrete Composites 32 (7) (2010) 508–513.
- [25] X.Z. Zhang, W. Sun, Electromagnetic shielding and absorption properties of fiber reinforced cementitious composites, Journal of Wuhan University of Technology- Materials Science Edition 27 (1) (2012) 172–176.
- [26] B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites, Composites Part A: Applied Science and Manufacturing 70 (2015) 69–81.
- [27] A.L. Materazzi, F. Ubertini, A.D. Alessandro, Carbon nanotube cement-based transducers for dynamic sensing of strain, Cement and Concrete Composites 37 (2013) 2–11.
- [28] B.G. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/ cement composite for traffic monitoring, Nanotechnology 20 (44) (2009) 445–501.
- [29] B.G. Han, J.P. Ou, Embedded piezoresistive cement-based stress/strain sensor, Sensors and Actuators A: Physical 138 (2) (2007) 294–298.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9d4facf-87fb-404b-93bc-d5bf4d6995ff