PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving carbon dioxide capture in aqueous ammonia solutions by fine SiO2 particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
Ammonia solutions are considered to be effective solvents for carbon dioxide absorption. Despite numerous advantages of these solvents, their high volatility is a significant technical and economic problem. Therefore, in this work, silica particles were used as additives to improve CO2 absorption and inhibit NH3 desorption. SiO2 microparticles and colloidal SiO2 particles in the concentration range of 0–0.15 wt.% were used in this study. The most favorable mass transport for CO2 absorption was at the concentration of colloidal particles of 0.05 wt.%. Under these conditions, the enhancement in the number of moles of absorbed CO2 was above 30%. However, in solvents containing 0.01 wt.% SiO2 microparticles, the increase in CO2 absorption was about 20%. At the same time, the addition of SiO2 particles significantly reduced the escape of ammonia from the solution. The best improvement was obtained when colloidal SiO2 particles were added, and then NH3 escape was decreased by about 60%. This unfavorable phenomenon was also inhibited in ammonia solutions containing SiO2 microparticles at a concentration of 0.01 wt.%
Rocznik
Strony
art. no. e16
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, P.O. Box-378, Ethiopia
  • Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Al-Hamed K.H.M., Dincer I., 2021. A comparative review of potential ammonia-based carbon capture systems. J. Environ. Manage., 287, 112357. DOI: 10.1016/j.jenvman.2021.112357.
  • 2. Alper E., Wichtendahl B., Deckwer W.-D., 1980. Gas absorption mechanism in catalytic slurry reactors. Chem. Eng. Sci., 35, 217–222. DOI: 10.1016/0009-2509(80)80090-X.
  • 3. Atzori F., Barzagli F., Varone A., Cao G., Concas A., 2023. CO2 absorption in aqueous NH3 solutions: Novel dynamic modeling of experimental outcomes. Chem. Eng. J., 451, 138999. DOI: 10.1016/j.cej.2022.138999.
  • 4. Ban Z.H., Keong L.K., Mohd Shariff A., 2014. Physical absorption of CO2 capture: A review. Adv. Mater. Res., 917, 134–143. DOI: 10.4028/www.scientific.net/AMR.917.134.
  • 5. Bińczyk G., Pohorecki R., Moniuk W., Możeński C., 2019. Amine activators of CO2 absorption in industrial conditions. Chem. Process Eng., 40, 157–165. DOI: 10.24425/cpe.2019.126108.
  • 6. Blomfield G.A., Little L.H., 1973. Chemisorption of ammonia on silica. Can. J. Chem., 51, 1771–1781. DOI: 10.1139/v73-265.
  • 7. Borhani T.N., Wang M., 2019. Role of solvents in CO2 capture processes: The review of selection and design methods. Renewable Sustainable Energy Rev., 114, 109299. DOI: 10.1016/j.rser.2019.109299.
  • 8. Chai S.Y.W., Ngu L.H., How B.S., 2022. Review of carbon capture absorbents for CO2 utilization. Greenhouse Gas. Sci. Technol., 12, 394–427. DOI: 10.1002/ghg.2151.
  • 9. Chao C., Deng Y., Dewil R., Baeyens J., Fan X., 2021. Post- combustion carbon capture. Renewable Sustainable Energy Rev., 138, 110490. DOI: 10.1016/j.rser.2020.110490.
  • 10. Chen Z., Liu H., Zhang H., Ying W., Fang D., 2013. Oxygen mass transfer coefficient in bubble column slurry reactor with ultrafine suspended particles and neural network prediction. Can. J. Chem. Eng., 91, 532–541. DOI: 10.1002/cjce.21663.
  • 11. Cuéllar-Franca R.M., Azapagic A., 2015. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util., 9, 82–102. DOI: 10.1016/j.jcou.2014.12.001.
  • 12. Czaplicka N., Dobrzyniewski D., Dudziak S., Jiang C., Konopacka-Łyskawa D., 2022. Improvement of CO2 absorption and inhibition of NH3 escape during CaCO3 precipitation in the presence of selected alcohols and polyols. J. CO2 Util., 62, 102085. DOI: 10.1016/j.jcou.2022.102085.
  • 13. IEA, 2022. Global energy review: CO2 emissions in 2021. International Energy Agency. Available at: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2
  • 14. Kim E.J., Kim H., Lee E., 2021. Influence of ammonia stripping parameters on the efficiency and mass transfer rate of ammonia removal. Appl. Sci., 11, 441. DOI: 10.3390/app11010441.
  • 15. Kuchyanov A.S., Chubakov P.A., Chubakov V.P., Mikerin S.L., 2019. Nonlinear interaction of silica photonic crystals with ammonia vapor. Results Phys., 15, 102726. DOI: 10.1016/j.rinp.2019.102726.
  • 16. Liu B., Giannis A., Zhang J., Chang V.W.-C., Wang J.-Y., 2015. Air stripping process for ammonia recovery from source-separated urine: modeling and optimization. J. Chem. Technol. Biotechnol., 90, 2208–2217. DOI: 10.1002/jctb.4535.
  • 17. Liu Y., Dai Z., Zhang Z., Zeng S., Li F., Zhang X., Nie Y., Zhang L., Zhang S., Ji X., 2021. Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy Environ. 6, 314–328. DOI: 10.1016/j.gee.2020.11.024.
  • 18. Ma S., Chen G., Zhu S., Han T., Yu W., 2016. Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor. Appl. Energy, 162, 354–362. DOI: 10.1016/j.apenergy.2015.10.089.
  • 19. Mahmoudi S., Hlawitschka M.W., 2022. Effect of solid particles on the slurry bubble columns behavior – A review. ChemBioEng Rev., 9, 63–92. DOI: 10.1002/cben.202100032.
  • 20. Mena P., Ferreira A., Teixeira J.A., Rocha F., 2011. Effect of some solid properties on gas–liquid mass transfer in a bubble column. Chem. Eng. Process. Process Intensif., 50, 181–188. DOI: 10.1016/j.cep.2010.12.013.
  • 21. Ochedi F.O., Yu J., Yu H., Liu Y., Hussain A., 2021. Carbon dioxide capture using liquid absorption methods: a review. Environ. Chem. Lett., 19, 77–109. DOI: 10.1007/s10311-020-01093-8.
  • 22. Olivier J.G.J., 2022. Trends in global CO2 and total green-house gas emissions. 2021 Summary Report. PBL Netherlands Environmental Assessment Agency, The Hague. Available at: https://www.pbl.nl/en/trends-in-global-co2-emissions.
  • 23. Pörtner H.O., Roberts D.C., Poloczanska E.S., Mintenbeck K., Tignor M., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., 2022. Climate change 2022: Impacts, adaptation and vulnerability. Summary for policymakers, Technical summary and full report. IPCC, Switzerland. Available at: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/.
  • 24. Sander R., 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys., 15, 4399–4981. DOI: 10.5194/acp-15-4399-2015.
  • 25. Sauer T., Hempel D.-C., 1987. Fluid dynamics and mass transfer in a bubble column with suspended particles. Chem. Eng. Technol., 10, 180–189. DOI: 10.1002/ceat.270100123.
  • 26. Seo J.-B., Jeon S.-B., Lee S.-S., Kim J.-Y., Oh K.-J., 2011. The physical solubilities and diffusivities of N2O and CO2 in aqueous ammonia solutions on the additions of AMP, glycerol and ethylene glycol. Korean J. Chem. Eng., 28, 1698–1705. DOI: 10.1007/s11814-011-0030-8.
  • 27. Tavakoli A., Rahimi K., Saghandali F., Scott J., Lovell E., 2022. Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review. J. Environ. Manage., 313, 114955. DOI: 10.1016/j.jenvman.2022.114955.
  • 28. Wang F., Zhao J., Miao H., Zhao J., Zhang H., Yuan J., Yan J., 2018. Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process. Appl. Energy, 230, 734–749. DOI: 10.1016/j.apenergy.2018.08.116.
  • 29. Yang N., Yu H., Li L., Xu D., Han W., Feron P., 2014. Aqueous ammonia (NH3) based post combustion CO2 capture: A review. Oil Gas Sci. Technol. – Rev. d’IFP Energies nouvelles, 69, 931–945. DOI: 10.2516/ogst/2013160.
  • 30. Zhang Q., Cheng C., Wu T., Xu G., Liu W., 2020. The effect of Fe3O4 nanoparticles on the mass transfer of CO2 absorption into aqueous ammonia solutions. Chem. Eng. Process. Process Intensif., 154, 108002. DOI: 10.1016/j.cep.2020.108002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9d3d6dd-5c00-46b1-bd95-ce86a44435f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.