PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Plastic Forming Processes on the Dissolution Rate of Biocompatible Mg Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of plastic deformation process on the dissolution rate of biocompatible Mg alloys was investigated. Two biocompatible MgLi1Ca0,2Zn1 and MgLi1Ca1Zn1 alloys were selected for the study. The alloys were deformed on a 100T press at a temperature of 350°C by conventional extrusion and by the equal channel angular extrusion process (ECAE). The grain size analysis showed a high degree of the grain refinement from approximately 110 mm in the initial state to 2.8 mm after the 3rd pass of the ECAE process. Compared to as-cast state, the degree of strengthening has increased after plastic forming. The results of biodegradation tests have shown a significant increase in corrosion rate after both conventional extrusion and ECAE, although after subsequent ECAE passes, this rate was observed to slightly decrease in the MgLi1Ca1Zn1 alloy. Based on the results of macro- and microstructure examinations, the corrosion progress in samples after the extrusion process was described.
Słowa kluczowe
Twórcy
autor
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Light Metals Division, 19 Piłsudskiego Str., 32-050 Skawina, Poland
autor
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Light Metals Division, 19 Piłsudskiego Str., 32-050 Skawina, Poland
autor
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Light Metals Division, 19 Piłsudskiego Str., 32-050 Skawina, Poland
autor
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Light Metals Division, 19 Piłsudskiego Str., 32-050 Skawina, Poland
autor
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Light Metals Division, 19 Piłsudskiego Str., 32-050 Skawina, Poland
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Light Metals Division, 19 Piłsudskiego Str., 32-050 Skawina, Poland
autor
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] D. T. Chou, D. Hong, J. Saha, J. Ferrero, B. Lee, Z. Tan, Z. Dong, P. N. Kumta, Acta Biomater. 9 (10), 8518-8533 (2013).
  • [2] X. N. Gu, Y. F. Zheng, Front Mater. Sci. China 4, 2, 111-115 (2010).
  • [3] X. N. Gu, S. S. Li, X. M. Li, Y. B Fan, Front Mater. Sci. 8, 3, 200-218 (2014).
  • [4] Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang, X. Zhou, Mater. and Design 29, 2034-2037, (2008).
  • [5] Z. Li, X. Gu, S. Lou, Y. Zheng, Biomat. 29, 1329-1344, (2008).
  • [6] S. Boczkal, M. Lech-Grega, J. Żelechowski, Sol. St. Phen. 231, 73-79, (2015).
  • [7] R. Zeng, W. Qi, F. Zhang, H. Cui, Y. Zheng, Prog. Nat. Sci.-Mater. 24, 492-499, (2014).
  • [8] J. M. Rosalie, H. Somekawa, A Singh, T. Mukai, Mag. Tech. 323-328 (2013).
  • [9] L. Bao, Q. Le, Z. Zhang, J. Cui, Q. Li, J. Mag. and Alloys 1, 2, 139-144 (2013).
  • [10] Y. Zheng, Magnesium Alloys as Degradable Biomaterials 2015, CRC.
  • [11] Q. Peng, Y. Huang, L. Zhou, N. Hort, K. U. Kainer, Biomat. 31, 3, 398-403, (2010).
  • [12] A. C. Hänzi, I. Gerber, M. Schinhammer, J. F. Löffler, P. J. Uggowitzer, Act. Biomat. 6, 1824-1833 (2010).
  • [13] S. Boczkal, M. Karaś, A. Osyczka, M. Lech-Grega, Mag. Tech. 399-404 (2018).
  • [14] E. Mostaed, M. Vedani, M. Hashempour, M. Bestetti, Biomatter. 4, 1 (2014).
  • [15] D. Orlov, K. D. Ralston, N. Birbilis, Y. Estrin, Acta Mater. 59, 6176-86 (2011).
  • [16] N. N. Aung, W. Zhou, Corros. Sci. 52, 589-94 (2010).
  • [17] R. Z. Valiev, T. G. Langdon, Prog. Mater. Sci. 51, 881-981 (2006).
  • [18] A. Yamashita, Z. Horita, T. G. Langdon, Mater. Sci. Eng. A 300, 142-7 (2001).
  • [19] M. Alvarez-Lopez, M. D. Pereda, J. A. del Valle, M. Fernandez-Lorenzo, M. C. Garcia-Alonso, O. A. Ruano, M. L. Escudero, Acta Biomater. 6, 1763-71 (2010).
  • [20] S. V. Dobatkin, et al, IOP Conf. Ser.: Mater. Sci. Eng.194, 012004 (2017).
  • [21] Q. Ge, D. Dellasega, A. G. Demir, M. Vedani, Acta Biomater. 9, 8604-10 (2013)
  • [22] J. Li, W. Xu, X. Wu, H. Ding, K. Xia, Mater. Sci. Eng. A 528, 5993-8 (2011)
  • [23] L. B. Tong, M. Y. Zheng, X. S. Hu, K. Wu, S. W. Xu, S. Kamado, Y. Kojima, Mater. Sci. Eng. A 527, 16-17, 4250-4256 (2010)
  • [24] R. Ding, C. Chung, Y. Chiu, P. Lyon, Mater. Sci. Eng. A 527, 3777-84 (2010).
  • [25] S. Li, Acta Mater. 56, 1031-43 (2008).
  • [26] H. K. Lin, J. C. Huang, T. G. Langdon, Mater. Sci. Eng. A 402, 250-7 (2005).
  • [27] S. Seipp,M. F.-X. Wagner, K. Hockauf, I. Schneider, L. W. Meyer, M. Hockauf, Int. J. Plast. 35, 155-66 (2012)
  • [28] R. Waksman, R. Pakala, P. K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F. O. Tio, E. Wittchow, S. Hartwig, C. Harder et al., Cath. Cardio Interv. 68, 607-17 (2006).
  • [29] R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan et al., PROGRESS-AMS Lancet 369, 1869-75 (2007).
  • [30] J. Vormann, Mol. Aspects Med. 24, 27-37 (2003).
  • [31] G. Song, A. Atrens. Adv. Eng. Mater. 5, 837-58 (2003).
  • [32] G. Song, Corros. Sci. 49, 1696-701 (2007).
  • [33] K. Przybyłowicz, I. Suliga, Solid. Met. and All. 28, 180-191 (1996).
  • [34] X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, W. Wang, Biomat. 31, 1093-1103 (2010).
  • [35] R. Nowosielski, K. Cesarz, R. Babilas, Jour. of Achiev. in Mater. and Manuf. Engin.V 58, 1, 7-15 (2013).
Uwagi
EN
1. The authors gratefully acknowledge the financial support from the project no. 3787/E-138/S/2017 financed by the Ministry of Science and Higher Education.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9d2e009-29e9-46c2-8752-1b9d62cdeecc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.