PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

SAR optimization for multi-dipole antenna array with regard to local hyperthermia

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Optymalizacja współczynnika SAR dla szyku z wieloma antenami dipolowymi pod kątem hipertermii miejscowej
Języki publikacji
EN
Abstrakty
EN
The following paper describes the valid optimization problem of multi-element circular array that contains 16 equal-length dipole antennas surrounding given two-spherical object. The task of the authors was to maximize the specific absorption rate (SAR) inside the inner object, while maintaining its minimum value in the external sphere. The proposed approach includes changes in the powers and phases of the voltage sources supplying individual dipoles of the antenna matrix. The shown method may have huge impact in localized tumor heating during thermal therapy.
PL
Niniejsza praca opisuje ważny problem optymalizacji wieloelementowego szyku kołowego, który zawiera 16 anten dipolowych, o równej długości, otaczających dwu-sferyczny obiekt. Zadaniem autorów była maksymalizacja współczynnika absorpcji własnej (SAR) w wewnętrznym obiekcie, przy zachowaniu jego minimalnej wartości w zewnętrznej kuli. Zaproponowane podejście uwzględnia zmiany mocy i faz źródeł napięciowych zasilających poszczególne dipole szyku antenowego. Przedstawiona metoda może mieć olbrzymi wpływ na zlokalizowane grzanie guza podczas terapii ciepłem.
Rocznik
Strony
17--20
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Krakow
  • University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Sciences, ul. Akademicka 13, 20-950 Lublin, Poland
Bibliografia
  • [1] Cala P., Bienkowski P., Antenna array for microwave ablation or hyperthermia working in the ISM 2.4 GHz band, Przeglad Elektrotechniczny, 94 (2018), No. 12, 238-241.
  • [2] Miaskowski A., Gas P., Szczygiel M., Optimization of SAR coefficient for dipole antennas array with regard to local hyperthermia, in 2018 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE), IEEE, (2018), [1-4]. Available at: http://dx.doi.org/10.1109/PTZE.2018.8503175
  • [3] Karampatzakis A., et al., Heating characteristics of antenna arrays used in microwave ablation: A theoretical parametric study, Computers in Biology and Medicine, 43 (2013), No. 10, 1321-1327.
  • [4] Fadeev A.M., et al., Thermometry system development for thermoradiotherapy of deep-seated tumours, Journal of Physics: Conference Series, 941 (2017), No. 1, Art. No. 012086, [1-6].
  • [5] de Morais J.E.V., et al. Magneto Tuning of a Ferrite Dielectric Resonator Antenna Based on LiFe5O8 Matrix, Journal of Electronic Materials, 47 (2018), No. 7, 3829-3835.
  • [6] Kodera S., Hirata A., Comparison of Thermal Response for RF Exposure in Human and Rat Models, International Journal of Environmental Research and Public Health, 15 (2018), No. 10, Art. No. 2320, [1-17].
  • [7] https://www.zurichmedtech.com/sim4life/ [12.10.2018]
  • [8] Mazurek P.A., et al., The intensity of the electromagnetic fields in the coverage of GSM 900, GSM 1800 DECT, UMTS, WLAN in built-up areas, in 2018 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE), IEEE, (2018), [1-4]. http://dx.doi.org/10.1109/PTZE.2018.8503156
  • [9] Rijnen Z., et al., Quality and comfort in head and neck hyperthermia: a redesign according to clinical experience and simulation studies, International Journal of Hyperthermia, 31(2015), No. 8, 823-830.
  • [10] Wiersma J., et al., A flexible optimization tool for hyperthermia treatments with RF phased array systems, International Journal of Hyperthermia, 18 (2002), No. 2, 73-85.
  • [11] Takook P., et al., Performance Evaluation of Hyperthermia Applicators to Heat Deep-Seated Brain Tumors, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2 (2018), No. 1, 18-24.
  • [12] Uddin N., Elshafiey I., Efficient energy localization for hybrid wideband hyperthermia treatment system, International Journal of RF and Microwave Computer Aided Engineering, 28 (2018), No. 3, Art. No. e21238, [1-13].
  • [13] Bellizzi G.G, et al., 3-D Field Intensity Shaping via Optimized Multi-Target Time Reversal, IEEE Transactions on Antennas and Propagation, 66 (2018), No. 8, 4380-4385.
  • [14] Kok H.P., et al., Predictive value of simulated SAR and temperature for changes in measured temperature after phase-amplitude steering during locoregional hyperthermia treatments, International Journal of Hyperthermia, (2018), [1-10]. DOI: 10.1080/02656736.2018.1500720
  • [15] Carrasco E., et al., Exposure assessment of portable wireless devices above 6 GHz, Radiation Protection Dosimetry, (2018), [1-8]. DOI: 10.1093/rpd/ncy177
  • [16] Curto S., et al., Design and characterisation of a phased antenna array for intact breast hyperthermia, International Journal of Hyperthermia, 34 (2018), No. 3, 250-260.
  • [17] Yee K.S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, AP14 (1966), 302-307.
  • [18] Osaci M., Numerical Simulation Methods of Electromagnetic Field in Higher Education: Didactic Application with Graphical Interface for FDTD Method, International Journal of Modern Education and Computer Science, 10 (2018), No. 8, 1-10.
  • [19] Ciosk K., Krawczyk A., Calculation of SAR in biological object of different parameters, Przeglad Elektrotechniczny, 83 (2007), No. 7-8, 93-95.
  • [20] Miaskowski A., Gas P., and Krawczyk A., SAR Calculations for Titanium Bar-Implant Subjected to Microwave Radiation, 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE), IEEE, (2016), [1-4]. Available at: http://dx.doi.org/10.1109/CPEE.2016.7738726
  • [21] Corcoles J., et al., On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI, Physics in Medicine & Biology, 62 (2017), No. 12, 4711-4727.
  • [22] Pennes H.H, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, Journal of Applied Physiology, 85 (1998), No. 1, 5-34.
  • [23] Cappiello G., et al., Differential evolution optimization of the SAR distribution for head and neck hyperthermia, IEEE Transactions on Biomedical Engineering, 64 (2017), No. 8, 1875-1885.
  • [24] Hasgall P.A., et al., IT'IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.0, May 15th 2018.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9d29069-2288-4ae8-9a7b-dcb0da2193c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.