PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cracking control technique for continuous steel-concrete composite girders under negative bending moment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuous steel-concrete composite girder can fully utilize material strength and possess large spanning ability for bridge constructions. However, the weak cracking resistance at the negative bending moment region of the girder seriously harms its durability and serviceability. This paper investigates practical techniques to improve the cracking performance of continuous steel-concrete composite girders subjected to hogging moment. A real continuous girder was selected as the background bridge and introduced for numerical analysis. Modeling results show that under the serviceability limit state, the principle stress of concrete slabs near the middle piers of the bridge was far beyond the allowable material strength, producing a maximum tensile stress of 10.0 MPa. Approaches for strengthening concrete decks at the negative moment region were developed and the effectiveness of each approach was assessed by examing the tensile stress in the slabs. Results indicate that the temporary counterweight approach decreased the maximum tensile stress in concrete slabs by 22%. Due to concrete shrinkage and creep, more than 65% of the prestressed compressive stresses in concrete slabs were finally dispersed to the steel beams. A thin ultra-high performance concrete (UHPC) overlay at the hogging moment region effectively increased the cracking resistance of the slabs, and practical engineering results convicted the applicability of the UHPC technique.
Rocznik
Strony
239--251
Opis fizyczny
Bibliogr. 25 poz., il., tab.
Twórcy
autor
  • Guangdong Highway Construction Co., LTD, Guangzhou, China
autor
  • Guangdong Yunmao Expressway Co. Ltd, Guangzhou, China
autor
  • Guangdong Communication Planning & Design Institute Co., Ltd, Guangzhou, China
  • Guangdong Highway Construction Co., LTD, Guangzhou, China
autor
  • Guangdong Communication Planning & Design Institute Co., Ltd, Guangzhou, China
autor
  • Guangdong Highway Construction Co., LTD, Guangzhou, China
Bibliografia
  • [1] J. Nie, et al., “Advances of research on steel-concrete composite bridges”, China Civil Engineering Journal, vol. 45, no. 6, pp. 110-122, 2012, doi: 10.15951/j.tmgcxb.2012.06.003.
  • [2] S. He, et al., “Structural performance of perforated steel plate-CFST arch feet in concrete girder-steel arch composite bridges”, Journal of Constructional Steel Research, vol. 201, art. no. 107742, 2023, doi: 10.1016/j.jcsr.2022.107742.
  • [3] B. Grzeszykowski and E. Szmigiera, “Nonlinear longitudinal shear distribution in steel-concrete composite beams”, Archives of Civil Engineering, vol. 65, no. 1, pp. 65-82, 2019, doi: 10.2478/ace-2019-0005.
  • [4] H.H. Xin, A. Mosallam, et al., “Analytical and experimental evaluation of flexural behavior of FRP pultruded composite profiles for bridge deck structural design”, Construction and Building Materials, vol. 150, pp. 123-149, 2017, doi: 10.1016/j.conbuildmat.2017.05.212.
  • [5] T. Keller, et al., “Quasi-static and fatigue performance of a cellular FRP bridge deck adhesively bonded to steel girders”, Composite Structures, vol. 70, no. 4, pp. 484-496, 2005, doi: 10.1016/j.compstruct.2004.09.028.
  • [6] J.W. Wang, et al., “Stability monitoring method of UHPC spherical hinge horizontal rotation system”, Archives of Civil Engineering, vol. 68, no. 3, pp. 601-616, 2022, doi: 10.24425/ace.2022.141905.
  • [7] H.H. Xin, et al., “Material-structure integrated design optimization of GFRP bridge deck on steel girder”, Structures, vol. 27, pp. 1222-1230, 2020, doi: 10.1016/j.istruc.2020.07.008.
  • [8] L.Y. Kou, “Research and perspective of slip property of composite steel-concrete beams”, Construction and Design for Engineering, vol. 11, pp. 43-46, 2010, doi: 10.3969/j.issn.1007-9467.2010.11.013.
  • [9] C.Y. Shao, “Development and application prospect of combined structural bridge”, Urban Roads Bridges and Flood Control, vol. 9, pp. 11-15+260+6, 2016, doi: 10.16799/j.cnki.csdqyfh.2016.09.003.
  • [10] S. He, et al., “Experimental study on flexural performance of HSS-UHPC composite beams with perfobond strip connectors”, Journal of Structural Engineering, vol. 148, no. 6, art. no. 04022064, 2022, doi: 10.1061/(ASCE)ST.1943-541X.0003366.
  • [11] Y.J. Liu, et al., “Transverse moment of steel- concrete composite twin I-girder bridge deck”, Journal of Chang’an University, vol. 42, no. 6, pp. 1-11, 2022, doi: 10.19721/j.cnki.1671-8879.2022.06.001.
  • [12] J.S. Fan, et al., “Effects of slips on load-carrying capacity of composite beams under negative bending”, Engineering Mechanics, vol. 22, n. 3, pp. 177-182, 2005, doi: 10.3969/j.issn.1000-4750.2005.03.031.
  • [13] S.H. He, et al., “Flexural performance of HSS-UHPC composite beams with perfobond strip connectors”, Journal of Traffic and Transportation Engineering, vol. 22, no. 6, pp. 143-157, 2022, doi: 10.19818/j.cnki.1671-1637.2022.06.009
  • [14] J. Li, et al., “Simulated test research on mechanical performance of steel-concrete composite beam of prestress construction”, Journal of Railway Science and Engineering, vol. 2, pp. 14-19, 2001, doi: 10.19713/j.cnki.43-1423/u.2001.02.003.
  • [15] J.L. Xiao, et al., “Flexural behavior of wet joints in steel-UHPC composite deck slabs under hogging moment”, Engineering Structures, vol. 252, art. no. 113636, 2022, doi: 10.1016/j.engstruct.2021.113636.
  • [16] S.H. He, et al., “Evaluation of shear lag effect in HSS-UHPC composite beams with perfobond strip connectors: Experimental and numerical studies”, Journal of Constructional Steel Research, vol. 194, art. no. 107312, 2022, doi: 10.1016/j.jcsr.2022.107312.
  • [17] Y. Xu, et al., “Shear behavior of flexible-sleeve perfobond strip connectors: Experimental and analytical studies”, Engineering Structures, vol. 264, art. no. 114380, 2022, doi: 10.1016/j.engstruct.2022.114380.
  • [18] J.F. An, et al., “Factors affecting cracking and crack control measures of steel-concrete composite girder bridge”, Journal of Nanjing Tech University (Natural Science Edition), vol. 42, no. 3, pp. 389-398, 2020, doi: 10.3969/j.issn.1671-7627.2020.03.016.
  • [19] H.Y. Wu, “Research on control measures for cracks in hogging moment area of curved composite beam”, Northern Communications, vol. 4, pp. 39-43+46, 2018, doi: 10.15996/j.cnki.bfjt.2018.04.011.
  • [20] D. Chen, et al., “Research on control measures for cracks in hogging moment area of composite beam using industrial construction method”, Shanghai Highways, vol. 3, pp. 51-53+57+4, 2019, doi: 10.3969/j.issn.1007-0109.2019.03.013.
  • [21] C. Shim and C. Lee, “Crack width control of precast deck loop joints for continuous steel-concrete composite girder bridges”, Advances in Concrete Construction, vol. 10, no. 1, pp. 21-34, 2020, doi: 10.12989/acc.2020.10.1.021.
  • [22] S.H. Long, et al., “Review on crack control in hogging moment zone of steel-concrete composite girder bridge”, Jiangxi Building Materials, vol. 9, pp. 21-23, 2021, doi: 10.3969/j.issn.1006-2890.2021.09.009.
  • [23] S.H. He, et al., “Investigation on interfacial anti-sliding behavior of high strength steel-UHPC composite beams”, Composite Structures, vol. 316, art. no. 117036, 2023, doi: 10.1016/j.compstruct.2023.117036.
  • [24] GB 50010-2010 Code for Design of Concrete Structures. China Industry Press, 2015.
  • [25] JTG D60-2019 General Code for Highway Bridges and Culverts. China Communications Press, 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9d1f98d-7125-4012-aa80-c30f16c78497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.