Identyfikatory
Warianty tytułu
Phenol sorption from water solution onto conventional and unconventional sorbents
Języki publikacji
Abstrakty
Badania własne przedstawione w niniejszej pracy dotyczą procesu sorpcji fenolu z wody na wysuszonych osadach ściekowych i na stałych produktach ubocznych powstających podczas procesu ich zgazowania (popiół). Zgazowanie jest obiecującą metodą termicznego zagospodarowania palnych substancji organicznych, niemniej jednak wciąż nierozwiązanym problemem jest sposób zagospodarowania powstających stałych produktów odpadowych. W ramach badań statyki procesu określono zarówno zdolność sorpcyjną, jak i czas osiągnięcia stanu równowagi fenolu na badanych materiałach sorpcyjnych. Badano także wpływ początkowego stężenia fenolu na jego pojemność sorpcyjną. Do matematycznego opisu sorpcji wykorzystano równania Langmuira oraz Freundlicha. Zakres pracy obejmował również ocenę zjawiska uwalniania z materiałów adsorpcyjnych pierwotnych substancji nieorganicznych i organicznych wraz z wyznaczeniem efektu toksycznego roztworu, stosując metody pośrednie. W podsumowaniu pracy, bazując na rezultatach wyników badań eksperymentalnych oraz różnych źródłach literaturowych, porównano pojemność sorpcyjną fenolu na konwencjonalnych i niekonwencjonalnych sorbentach.
The use of adsorption methods in wastewater treatment allows achieving high quality levels of the streams discharged into the environment. This is particularly taking into account the presence of different toxic and hazardous organic and inorganic substances in the wastewater. This problem applies to both municipal wastewater after mechanical-biological treatment as well as to industrial wastewater. Active carbon is the most commonly used for this purpose. However, novel opportunities are sought, including, for example, the use of waste (with appropriate physicochemical characteristics) as sorbents. The studies presented in this paper are related to the process of sorption of phenol from water on the dried sewage sludge and solid by-products generated during the gasification process (ash). Gasification is a promising method of thermal management of combustible organic substances. Nevertheless, there is still an unresolved problem connected with management of solid waste by-products generated during the process. In the frame of the study of the process statics susceptibility to sorption and the time to reach steady state of the phenol on sorption materials studied were determined. The effect of the initial concentration of the phenol on his sorption was also examined. For the mathematical description of adsorption Langmuir and Freundlich equations were used. The scope of the work also included an assessment of the phenomenon of release from adsorbent materials the primary inorganic and organic substances. Simultaneously, a solution toxic effect based on the indirect methods was determined. Additionally, based on the literature results, efficiency of the phenol sorption using conventional and non-conventional sorbents was determined. Phenol sorption proceeded to a greater extent on the ash produced during the gasification process than on the dried sludge subjected to heat treatment. The adsorption equilibration depended also on the absorbent material. Moreover, the increase of initial phenol concentration corresponded to the increase of phenol sorption. The goodness of fit of the theoretical adsorption isotherm (according to the Langmuir or Freundlich equations) to experimental data in the tested range of phenol concentrations (from 60 to 90 mg/dm3) depended on the tested sorbent material. In the case of phenol sorption on the ash the determination coefficients for both isotherms were similar, and in the case of the dried sludge better determination coefficient was obtained for the Freundlich isotherm. The analysis of the isotherm coefficients confirmed high sorption of phenol on the ashes as in the previous studies. Phenol sorption capacity on the sorbents tested in this study was greater than for the other unconventional adsorbents (bagasse fly ash, neutralized red mud, olive pomace) only in the case of ash. The tested sorbent materials released primary organic and inorganic substances on the contact with deionized water. The intensity of this phenomenon was greater for the dried sludge than for the ash. The increase of the toxic effect of the solution of this material was also observed. These studies, however, require continuation for better understanding of this phenomenon.
Czasopismo
Rocznik
Tom
Strony
67--81
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Politechnika Śląska w Gliwicach, Instytut Inżynierii Wody i Ścieków, ul. Konarskiego 18, 44-100 Gliwice
autor
- Politechnika Śląska w Gliwicach, Instytut Techniki Cieplnej, ul. Konarskiego 22, 44-100 Gliwice
Bibliografia
- [1] Bueno M.J.M., Gomez M.J., Herrera S., Hernando M.D., Aguera A., Fernandez-Alba A.R., Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring, Environ. Pollut. 2012, 164, 267-273.
- [2] Reemtsma T., Weiss S., Mueller J., Petrovic M., Gonzalez S., Barcelo D., Ventura F., Knepper T.P., Polar pollutants entry into the water cycle by municipal wastewater: A European perspective, Environ. Sci. Technol. 2012, 40, 5451-5458.
- [3] Luo Y., Guo W., Ngo H.H., Nghiem L.D., Hai F.I., Zhang J., Liang S., Wang X.C., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ. 2014, 473-474, 619-641.
- [4] Kasprzyk-Hordern B., Dinsdale R.M., Guwy A.J., The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, Water Res. 2009, 43, 363-380.
- [5] Sharmila D., Muthusamy P., Removal of heavy metal from industrial effluent using bio adsorbents (Camellia sinensis), J. Chem. Pharm. Res. 2013, 5, 10-13.
- [6] Limam I., Guenne A., Driss M.R., Mazeas L., Simultaneous determination of phenol, methylphenols, chlorophenols and bisphenol-A by headspace solid-phase microextraction-gas chromatography-mass spectrometry in water samples and industrial effluents, Int. J. Environ. Anal. Chem. 2010, 90, 230-244.
- [7] Raju P., Saseetharan M.K., Removal of lead (II) from metal plating effluents using sludge based activated carbon as adsorbent, J. Environ. Sci. Eng. 2010, 52, 7-10.
- [8] Abdul J.M., Vigneswaran S., Shon H.K., Nathaporn A., Kandasamy J., Comparison of granular activated carbon bio-sorption and advanced oxidation processes in the treatment of leachate effluent, Korean J. Chem. Eng. 2009, 26, 724-730.
- [9] Olayinka K.O., Alo B.I., Adu T., Sorption of heavy metals from electroplating effluents by low-cost adsorbents II: Use of waste tea, coconut shell and coconut husk, J. Appl. Sci. 2007, 7, 2307-2313.
- [10] Tofan L., Paduraru C., Volf I., Wenkert R., Comparative study concerning the kinetic and thermodynamic description of some heavy metal ions sorption on fly ash, J. Opto. Adv. Mat. 2011, 13, 892-896.
- [11] Thawornchaisit U., Pakulanon K., Application of dried sewage sludge as phenol biosorbent, Bioresour. Technol. 2007, 98, 140-144.
- [12] Sulaymon A.H., Abbood D.W., Ali A.H., A comparative adsorption/biosorption for the removal of phenol and lead onto granular activated carbon and dried anaerobic sludge, Desalin. Water Treat. 2013, 51, 2055-2067.
- [13] Aksu Z., Akpinar D., Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge, Sep. Purif. Technol. 2000, 21, 87-99.
- [14] Dobele G.. Bogdannovich N., Telysheva G., Viesturs U., Application of sorbent obtained by pyrolysis of sewage sludge for biological treatment of waste water, Appl. Biochem. Biotechnol. Enzym. Eng. Biotechnol. 1996, 57-58, 857-867.
- [15] Juang R.S., Wu F.C., Tseng R.L., Adsorption isotherms of phenolic compounds from aqueous solutions onto activated carbon fibers, J. Chem. Eng. Data. 1996, 41, 487-492.
- [16] Nevskaia D.M., Santianes A., Munoz V., Guerrero-Ruiz A., Interaction of aqueous solutions of phenol with commercial activated carbons: An adsorption and kinetic study, Carbon 1999, 37, 1065-1074.
- [17] Qadeer R., Rehan A.H., A study of the adsorption of phenol by activated carbon from aqueous solutions, Turk. J. Chem. 2002, 26, 357-361.
- [18] Dabhade M.A., Saidutta M.B., Murthy D.V.R., Adsorption of phenol on granular activated carbon from nutrient medium: equilibrium and kinetic study, Int. J. Env. Res. 2009, 3, 557-568.
- [19] Werle S., Wilk R.K., An experimental research on the influence of the main properties of sewage sludge on syngas composition, Environmental Engineering IV - Proceedings of the Conference on Environmental Engineering IV, 2013, 207-211.
- [20] Werle S., Dudziak M., Gaseous fuels production from dried sewage sludge via air gasification, Waste Manage. Res. 2014, 32, 601-607.
- [21] Werle S., Dudziak M., Analysis of organic and inorganic contaminants in dried sewage sludge and by-products of dried sewage sludge gasification, Energies 2014, 7, 462-476.
- [22] Abrego J., Arauzo J., Sanchez J.L., Gonzalo A., Cordero T., Rodriguez-Mirasol J., Structural changes of sewage sludge char during fixed-bed pyrolysis, Ind. Eng. Chem. Res. 2009, 48, 3211-3221.
- [23] Kuśmierek K., Świątkowski A., Wpływ liczby atomow chloru w cząsteczkach kwasow chlorofenoksyoctowych na ich adsorpcję z roztworow wodnych na węglu aktywnym, Ochr. Środ. 2013, 35, 47-50.
- [24] Dursun A.Y., Seda Kalayci C., Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin, J. Hazard. Mater. 2005, B123, 151-157.
- [25] Liu Q.S., Zheng T., Wang P., Jiang J.P., Li N., Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibres, Chem. Eng. J. 2010, 157, 348-356.
- [26] Dursun G., Cicek H., Dursun A.Y., Adsorption of phenol from aqueous solution by using carbonized beet pulp, J. Hazard. Mater. 2005, 125, 175-182.
- [27] Ozkaya B., Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J. Hazard. Mater. 2006, 129, 158-163.
- [28] Kennedy L.J., Vijaya J.J., Kayalvizhi K., Sekaran G., Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process, Chem. Eng. J. 2007, 132, 279-287.
- [29] Aravindhan R., Rao J.R., Nair B.U., Application of a chemically modified green macro alga as a biosorbent for phenol removal, J. Environ. Manage. 2009, 90, 1877-1883.
- [30] Srivastava V.C., Swamy M.M., Mall I.D., Prasad B., Mishra I.M., Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics, Colloids Surf., A: Physicochemical Engineering Aspects 2008, 272, 89-104.
- [31] Tor A., Cengeloglu Y., Aydin M.E., Ersoz M., Removal of phenol from aqueous phase by using neutralized red mud, J. Colloid Interface Sci. 2006, 300, 498-503.
- [32] Stasinakis A.S., Elia I., Petalas A.V., Halvadakis C.P., Removal of total phenols from olive-mill wastewater using an agricultural by-product olive pomace, J. Hazard. Mater. 2008, 160, 408-413.
- [33] Werle S., Dudziak M., Ocena toksyczności osadow ściekowych oraz produktow ubocznych powstających podczas ich zgazowania, Przem. Chem. 2013, 92, 1350-1353.
- [34] Pollumaa L., Kahru A., Manusadzianas L., Biotest- and chemistry-based hazard assessment of soils, sediments and solid wastes, J. Soil. Sedim. 2004, 4, 267-275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9d1461c-9a72-4b3d-89c4-232e7b0dda97