PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article provides a comparison of various wireless data transmission protocols, such as Wireless M-Bus, Lo- RaWAN, Sigfox, NB-IoT and a newly developed proprietary protocol, studying their performance in the application of batterypowered residential water meters. Key aspects of the comparison include energy consumption, which is analyzed through comparing unitary amount of charge required to conduct a single, bidirectional data transaction between the meter and base station, and maximum coupling loss which effectively defines the range and coverage in the system. For completeness, the study includes also a brief cost analysis and ends with a conclusion, stating when each of the particular standards should be favored.
Rocznik
Strony
833--842
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Krakow, Poland
autor
  • Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Krakow, Poland
  • Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Krakow, Poland
autor
  • Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Krakow, Poland
Bibliografia
  • [1] Ł. Krzak, M. Kubaszek, J. Macheta, and C. Worek, “Comparison of wireless data transmission protocols for residential water meter applications - Matlab scripts,” 2023. [Online]. Available: https://github.com/lkrzak/ijet2023
  • [2] S. K. Wong and M. Moghavvemi, “A reliable and economically feasible automatic meter reading system using power line distribution network (technical note),” International Journal of Engineering, vol. 18, no. 3, pp. 301-318, 2005. [Online]. Available: https://www.ije.ir/article_71596.html
  • [3] T. Boyle, D. Giurco, P. Mukheibir, A. Liu, C. Delaney, S. White, and R. Stewart, “Intelligent metering for urban water: A review,” Water, vol. 5, pp. 1052-1081, 09 2013. [Online]. Available: https://doi.org/10.3390/w5031052
  • [4] Berg Insight, “Smart water metering in europe and north america. 2nd edition,” 2022. [Online]. Available: https://www.berginsight.com/smart-water-metering-in-europe-and-north-america
  • [5] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of lpwan technologies for large-scale iot deployment,” ICT Express, vol. 5, no. 1, pp. 1-7, 2019. [Online]. Available: https://doi.org/10.1016/j.icte.2017.12.005
  • [6] P. Levchenko, D. Bankov, E. Khorov, and A. Lyakhov, “Performance comparison of nb-fi, sigfox, and lorawan,” Sensors, vol. 22, no. 24, 2022. [Online]. Available: https://doi.org/10.3390/s22249633
  • [7] Y. Lalle, L. C. Fourati, M. Fourati, and J. P. Barraca, “A comparative study of lorawan, sigfox, and nb-iot for smart water grid,” in 2019 Global Information Infrastructure and Networking Symposium (GIIS), 2019, pp. 1-6. [Online]. Available: https://doi.org/10.1109/GIIS48668.2019.9044961
  • [8] N. Sushma, H. N. Suresh, J. M. Lakshmi, P. N. Srinivasu, A. K. Bhoi, and P. Barsocchi, “A unified metering system deployed for water and energy monitoring in smart city,” IEEE Access, vol. 11, pp. 80 429-80 447, 2023. [Online]. Available: https://doi.org/10.1109/ACCESS.2023.3299825
  • [9] P. Ruckebusch, S. Giannoulis, I. Moerman, J. Hoebeke, and E. De Poorter, “Modelling the energy consumption for over-the-air software updates in lpwan networks: Sigfox, lora and ieee 802.15.4g,” Internet of Things, vol. 3-4, pp. 104-119, 2018. [Online]. Available: https://doi.org/10.1016/j.iot.2018.09.010
  • [10] S. M. Phal, G. R. Salanke N.S., S. G., and P. S.B., “Intelligent meters for urban domestic water consumption,” in 2019 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), 2019, pp. 59-63. [Online]. Available: https://doi.org/10.1109/CCEM48484.2019.00013
  • [11] F. Abate, M. Carratù, C. Liguori, and V. Paciello, “A low cost smart power meter for iot,” Measurement, vol. 136, pp. 59-66, 2019. [Online]. Available: https://doi.org/10.1016/j.measurement.2018.12.069
  • [12] S. Spinsante, S. Squartini, L. Gabrielli, M. Pizzichini, E. Gambi, and F. Piazza, “Wireless m-bus sensor networks for smart water grids: Analysis and results,” International Journal of Distributed Sensor Networks, vol. 10, no. 6, p. 579271, 2014. [Online]. Available: https://doi.org/10.1155/2014/579271
  • [13] S. Squartini, L. Gabrielli, M. Mencarelli, M. Pizzichini, S. Spinsante, and F. Piazza, “Wireless m-bus sensor nodes in smart water grids: The energy issue,” in 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), 2013, pp. 614-619. [Online]. Available: https://doi.org/10.1109/ICICIP.2013.6568148
  • [14] L. Casals Ibáñez, B. Mir Masnou, R. Vidal Ferré, and C. Gomez, “Modeling the energy performance of lorawan,” Sensors, vol. 17, p. 2364, 10 2017. [Online]. Available: https://doi.org/10.3390/s17102364
  • [15] S. Maudet, G. Andrieux, R. Chevillon, and J.-F. Diouris, “Refined node energy consumption modeling in a lorawan network,” Sensors, vol. 21, no. 19, p. 6398, Sep 2021. [Online]. Available: http://doi.org/10.3390/s21196398
  • [16] S. Trendov, M. Gering, and E. Siemens, “Impact of lorawan transceiver on end device battery lifetime,” in 2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP), 2023, pp. 1-5. [Online]. Available: https://doi.org/10.1109/IWSSIP58668.2023.10180293
  • [17] C. Gomez, J. Veras, R. Vidal Ferré, L. Casals Ibáñez, and J. Paradells, “A sigfox energy consumption model,” Sensors, vol. 19, p. 681, 02 2019. [Online]. Available: https://doi.org/10.3390/s19030681
  • [18] M. Naeem, M. Albano, K. G. Larsen, B. Nielsen, A. Høedholt, and C. Ø. Laursen, “Modelling and analysis of a sigfox-based iot network using uppaalsmc,” IEEE Sensors Journal, vol. 23, no. 10, pp. 10 577-10 587, 2023. [Online]. Available: https://doi.org/10.1109/JSEN.2023.3261667
  • [19] A. K. Sultania, P. Zand, C. Blondia, and J. Famaey, “Energy modeling and evaluation of nb-iot with psm and edrx,” in 2018 IEEE Globecom Workshops (GC Wkshps), 2018, pp. 1-7. [Online]. Available: https://doi.org/10.1109/GLOCOMW.2018.8644074
  • [20] C. B. Mwakwata, H. Malik, M. Mahtab Alam, Y. Le Moullec, S. Parand, and S. Mumtaz, “Narrowband internet of things (nb-iot): From physical (phy) and media access control (mac) layers perspectives,” Sensors, vol. 19, no. 11, 2019. [Online]. Available: https://doi.org/10.3390/s19112613
  • [21] M. Lukic, S. Sobot, I. Mezei, D. Vukobratovic, and D. Danilovic, “In-depth real-world evaluation of nb-iot module energy consumption,” in 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), 2020, pp. 261-265. [Online]. Available: https://doi.org/10.1109/SmartIoT49966.2020.00046
  • [22] A. Sorensen, H. Wang, M. J. Remy, N. Kjettrup, R. B. Sorensen, J. J. Nielsen, P. Popovski, and G. C. Madueno, “Modeling and experimental validation for battery lifetime estimation in NB-IoT and LTE-m,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9804-9819, jun 2022. [Online]. Available: https://doi.org/10.1109/jiot.2022.3152173
  • [23] European Standard, “EN 13757-4:2019 - Communication systems for meters and remote reading of meters - Part 4: Wireless meter readout (Radio meter reading for operation in SRD bands),” 2019.
  • [24] LoRa Alliance, “Lorawan® regional parameters rp002-1.0.4,” 2022. [Online]. Available: https://resources.lora-alliance.org/technical-specifications/rp002-1-0-4-regional-parameters
  • [25] SIGFOX, “Sigfox technical overview,” May 2017. [Online]. Available: https://api.build.sigfox.com/files/59c211c69d14790001fbe9a2
  • [26] S. Aguilar, A. Platis, R. Vidal, and C. Gomez, “Energy consumption model of schc packet fragmentation over sigfox lpwan,” Sensors, vol. 22, no. 6, 2022. [Online]. Available: https://doi.org/10.3390/s22062120
  • [27] P. Thubert, “An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH),” RFC 9030, May 2021. [Online]. Available: https://www.rfc-editor.org/info/rfc9030
  • [28] M. Kubaszek, J. Macheta, Ł. Krzak, and C. Worek, “The analysis of energy consumption in 6tisch network nodes working in sub-ghz band,” International Journal of Electronics and Telecommunications, vol. vol. 66, no. No 1, pp. 201-210, 2020. [Online]. Available: https://doi.org/10.24425/ijet.2020.131864
  • [29] M. R. S. Jagir Hussain, “Be-rpl: Balanced-load and energy-efficient rpl,” Computer Systems Science and Engineering, vol. 45, no. 1, pp. 785-801, 2023. [Online]. Available: http://doi.org/10.32604/csse.2023.030393
  • [30] I. F. V. Junior, J. Granjal, and M. Curado, “A distributed network-aware tsch scheduling,” in 2023 19th International Conference on the Design of Reliable Communication Networks (DRCN), 2023, pp. 1-8. [Online]. Available: https://doi.org/10.1109/DRCN57075.2023.10108193
  • [31] Ł. Krzak, C. Worek, G. Gajoch, and J. Witkowski, “Adaptive radio communication layer for a stationary water meter reading system,” Przeglad Elektrotechniczny, 2022. [Online]. Available: https://doi.org/10.15199/48.2022.01.24
  • [32] C. Worek, Ł. Krzak, G. Gajoch, and J. Witkowski, “Two-band, sdr-based base station for smart metering applications,” Przeglad Elektrotechniczny, 2022. [Online]. Available: https://doi.org/10.15199/48.2022.01.26
  • [33] ST Microelectronics, “Datasheet of stm32wle5xx and stm32wle4xx(ds13105 rev 12),” 2022.
  • [34] Semtech, “Sx1272/3/6/7/8 lora modem design guide,” 2013.
  • [35] SIGFOX, “Sigfox access station micro smbs-t4 datasheet,” 2023. [Online]. Available: https://support.sigfox.com/docs/smbs-t4-datasheet
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. The article presents the results of R&D work carried out as part of the project entitled ”Development of a dual-band LPWAN network dedicated to work in utility consumption metering systems”, co-financed by the European Union under sub-measure 1.2.1 ”Research and development projects of enterprises”, Regional Operational Programme for the Małopolska Region 2014-2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9cb7a20-2aab-45fc-abd5-106f70c164aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.