PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of human mesenchymal stem cells culture on nanofibrous polyurethane scaffolds and films

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this study was to evaluate whether electrospun porous nanofibrous scaffold of polyurethane (PU) with low and high beads accommodate the viability and growth of human bone marrow mesenchymal stem cells (hBM MSCs) in comparison with flat surface (Polypropylen). Design/methodology/approach: To our knowledge, the influence of the beads density on nanofibrous scaffold has never been investigated. For this purpose, we electrospun PU to fabric two porous nanofiber scaffolds with less and high density beads to enhance cells attachment and proliferation of hBM MSCs. Moreover, those surfaces were compared to a flat surface (PP). The samples were studied using scanning electron microscopy (SEM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and static contact angle measurement. Findings: The characterization of the samples revealed that hydrophilic surface of high quantity nanofiber with fewer beads scaffolds (LBNF-PU) had less nanofiber with higher quantity of beads that were overlapped on each other firmly compared to low quantity nanofiber with more beads scaffolds (HBNF-PU). MSCs cell morphology on both HBNF-PU and LBNF-PU nanofibrous scaffolds and flat surface was different; it was observed elongated cell shape for LBNF-PU and flat surface and rounded cell shape for HBNF-PU. Live/dead studies confirmed cell viabilities on flat and nanostructured surfaces. Cells expansion on Polypropylen and nanofibrous scaffolds were increased until 7 days of culture. Research limitations/implications: The randomly nanofiber scaffold limited the growth of human bone marrow mesenchymal stem cells (hBM MSCs). The aligned nanofiber scaffold will be evaluated at next investigation. Originality/value: Nanofibrous scaffold have recently draw attention for potential applications in small vascular replacement. Human bone marrow mesenchymal stem cells (hBM MSCs) growth on porous nanofibrous scaffolds is a promising strategy for tissue engineering. The influence of the beads density on nanofibrous scaffold has never been investigated. For this purpose, we electrospun PU to fabric two porous nanofiber scaffolds with less and high density beads to enhance cells attachment and proliferation of hBM MSCs.
Rocznik
Strony
53--61
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Health Science Institute, Department of Stem Cell Sciences, Hacettepe University, 06100, Ankara, Turkey
  • Stem Cell Research and Application Center, Hacettepe University, 06100, Ankara, Turkey
  • Eskişehir Vocational School, Mechatronic Programme, Eskişehir Osmangazi University, 26100, Eskişehir, Turkey
Bibliografia
  • [1] S. Agarwall, J. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications, Polymer 49 (2008) 5603-5621.
  • [2] H.B. Lee, G. Khang, J.H. Lee, Polymeric biomaterials. The Biomedical Engineering Handbook, 2nd Edition, E.J.D.B.B. Raton (Ed.), CRC Press LLC, 2000.
  • [3] F.P. Barry, J.M. Murphy, Mesenchymal stem cells: clinical applications and biological characterization, The International Journal of Biochemistry & Cell Biology 36/4 (2004) 568-584.
  • [4] C.A. Bashur, R.D. Shaffer, L.A. Dahlgren, S.A. Guelcher, A.S. Goldstein, Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells, Tissue engineering. Part A 15 (2009) 2435-2445.
  • [5] N. Bhardwaj, S. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnology Advances 28 (2010) 325-347.
  • [6] B. Celebi, M. Cloutier, R.B. Rabelo, D. Mantovani, A. Bandiera, Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation, Macromolecular Bioscience 12 (2012) 546-1554.
  • [7] B. Celebi, A.E. Elcin, Y.M. Elcin, Proteome analysis of rat bone marrow mesenchymal stem cell differentiation, Journal of Proteome Research 9/10 (2010) 5217-5227.
  • [8] P. Chen, Q. Wu, Y. Ding, M. Chu, Z. Huang, W. Hu, A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro, European Journal of Pharmaceutics and Biopharmaceutics 76/3 (2010) 413-420.
  • [9] P. Dicesare, W.M. Fox, M.J. Hill, G.R. Krishnan, S. Yang, D. Sarkar, Cell-material interactions on biphasic polyurethane matrix, Journal of Biomedical Materials Research A 101/8 (2013) 2151-2163.
  • [10] Y. Gustafsson, J. Haag, P. Jungebluth, V. Lundin, M.L. Lim, S. Baiguera, F. Ajalloueian, C. Del Gaudio, A. Bianco, G. Moll, S. Sjöqvist, G. Lemon, A.I. Teixeira, P. Macchiarini, Viability and proliferation of rat MSCs on adhesion protein-modified PET and PU scaffolds, Biomaterials 33 (2012) 8094-8103.
  • [11] W. He, Z. Ma, T. Yong, W.E. Teo, S. Ramakrishna, Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth, Biomaterials 26 (2005) 7606-7615.
  • [12] J. Hu, X. Sun, H. Ma, C. Xie, Y.E. Chen, P.X. Ma, Porous nanofibrous PLLA scaffolds for vascular tissue engineering, Biomaterials 31 (2010) 7971-7977.
  • [13] J.-P. Karam, C. Muscari, C.N. Montero-Menei, Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium, Biomaterials 33 (2012) 5683-5695.
  • [14] S.H. Ku, C.B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering, Biomaterials 31 (2010) 9431-9437.
  • [15] K.H. Lee, G.H. Kwon, S.J. Shin, J.Y. Baek, D.K. Han, Y. Park, S.H. Lee, Hydrophilic electrospun polyurethane nanofiber matrices for hMSC culture in a microfluidic cell chip, Journal of Biomedical Materials Research A 90 (2009) 619-628.
  • [16] C. Liu, R. Abedian, R. Meister, C. Haasper, C. Hurschler, C. Krettek, G. von Lewinski, M. Jagodzinski, Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds, Biomaterials 33 (2012) 1052-1064.
  • [17] J.E. McBane, K.G. Battiston, A. Wadhwani, S. Sharifpoor, R.S. Labow, J.P. Santerre, The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells, Biomaterials 32 (2011) 3584-3595.
  • [18] H. Niu, J. Mu, J. Zhang, P. Hu, P. Bo, Y. Wang, Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration, Journal of Materials Science. Materials in Medicine 24/6 (2013) 1535-1542.
  • [19] M. Pattison, S. Wurster, T. Webster, K. Haberstroh, Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications, Biomaterials 26/15 (2005) 2491-2500.
  • [20] F. Sheikh, M. Kanjwal, S. Saran, W. Chung, H. Kim, Polyurethan nanofibers containing copper nanoparticles as future materials, Applied Surface Science 257 (2011) 3020-3026.
  • [21] G. Trovati, E.A. Sanches, S.C. Neto, Y.P. Mascarenhas, G.O. Chierice, Characterization of polyurethane resins by FTIR, TGA, and XRD, Journal of Applied Polymer Science 115 (2010) 263-268.
  • [22] X. Xin, M. Hussain, J.J. Mao, Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold, Biomaterials 28 (2007) 316-325.
  • [23] H. Yoo, T. Kim, T. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Advanced Drug Delivery Reviews 61 (2009) 1033-1042.
  • [24] H. Zahedmanesh, M.J. Stoddart, P. Lezuo, C. Forkmann, M.A. Wimmer, M.P. Alini, H. Van Oosterwyck, Deciphering mechanical regulation of chondrogenesis in fibrin-polyurethane composite scaffolds enriched with human mesenchymal stem cells; a dual computational and experimental approach, Tissue Engineering A (2014) (in print).
  • [25] H. Zhuo, J. Hu, S. Chen, L. Yeung, Preparation of Polyurethan Nanofibers by Electrospinning, Journal of Applied Polymer Science 109 (2008) 406-411.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9c0fc6b-7ef8-494c-b6bf-b13046593039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.