PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual water evaluation for grains products in Iran. Case study: pea and bean

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wirtualnej wody w produkcji ziarna w Iranie – przykład grochu i fasoli
Języki publikacji
EN
Abstrakty
EN
Shortage of water is considered as one of the most important straits of agricultural development in Iran. The main purpose of this study is to determine virtual water used to pea and bean production and water use efficiency, select the best area for cultivating these two grains and find the virtual water budget for the aforementioned grains. The results showed that among the three provinces main producers of pea in Iran, the highest virtual water of pea belongs to Lorestan with 3534 dm3·kg–1 and the lowest belongs to West Azerbaijan with 2660 dm3·kg–1 in irrigated cultivation. Water use efficiency in irrigated cultivation in Kermanshah and West Azerbaijan are at the same level; however, Kermanshah has enjoyed much more level of virtual water. For beans, the highest amount of virtual water in irrigated cultivation belongs to Lorestan (3651 dm3·kg–1) and the lowest amount refers to Markazi (2725 dm3·kg–1) and also the highest level of water use efficiency for this product refers to Markazi. Also it was found that 160.15 mln m3 of water has been exported from the country water resources by these products so virtual water budget for studied crops were negative.
PL
Deficyt wody uznawany jest za jeden z najważniejszych problemów rozwoju rolnictwa w Iranie. Głównym celem badań przedstawionych w pracy jest oznaczenie ilości wody wirtualnej zużywanej do produkcji grochu i fasoli oraz wydajności zużycia wody, wybór najlepszych terenów do uprawy obu roślin i sporządzenie dla nich bilansu wirtualnej wody. Uzyskane wyniki wykazały, że spośród trzech prowincji – głównych producentów grochu w Iranie – największą objętość wirtualnej wody (3534 dm3·kg–1) zużywa się do nawadnianych upraw w Lorestanie, a najmniejszą (2660 dm3·kg–1) – do nawadnianych upraw w prowincji Zachodni Azerbejdżan. Wydajność zużycia wody w nawadnianych uprawach w Kermanshah i Zachodnim Azerbejdżanie była podobna, a uprawy w Kermanshah cechowało większe zużycie wody wirtualnej. Do produkcji fasoli największą objętość wirtualnej wody stwierdzono w Lorestanie (3651 dm3·kg–1), a najmniejszą w Markazi (2725 dm3·kg–1), gdzie stwierdzono także największą wydajność zużycia wody. Obliczono także, że – eksportując te produkty roślinne – wysłano za granicę 160,15 milionów m3 wody wirtualnej, skutkiem czego bilans wodny badanych upraw był ujemny.
Wydawca
Rocznik
Tom
Strony
275--280
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • University of Tehran, Faculty of New Sciences and Technologies, Department of Renewable Energies and Environmental Engineering, North Karghar St., Tehran, Iran
autor
  • University of Tehran, Faculty of New Sciences and Technologies, Department of Renewable Energies and Environmental Engineering, North Karghar St., Tehran, Iran
  • Ferdowsi University of Mashad, Faculty of Letters and Humanities, Department of English language and Literature, Mashhad, Iran
  • University of Tehran, Faculty of New Sciences and Technologies, Department of Renewable Energies and Environmental Engineering, North Karghar St., Tehran, Iran
Bibliografia
  • ALDAYA M.M., MARTINEZ-SANTOS P., LLAMAS M.R. 2010. Incorporating the water footprint and virtual water into policy: reflections from the Mancha Occidental Region, Spain. Water Resources Management. Vol. 24(3) p. 941–958.
  • ALLAN T. 1998. Virtual water: a strategic resource global solutions to regional deficits. Ground Water. Vol. 36(5) p. 545–546.
  • ARTO I., ANDREONI V., RUEDA-CANTUCHE J.M. 2016. Global use of water resources: a multiregional analysis of water use, water footprint and water trade balance. Water Resources and Economics. Vol. 15 p. 1–14.
  • CHAPAGAIN A.K., HOEKSTRA A.Y., SAVENIJE H.H.G., GAUTAM R. 2006. The water footprint of cotton consumption: an assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics. Vol. 60(17) p. 186–203.
  • CLARK S., SARLIN P., SHARMA A., SISSON S.A. 2015. Increasing dependence on foreign water resources? An assessment of trends in global virtual water flows using a self-organizing time map. Ecological Informatics. Vol. 26(7) p. 192–202.
  • EHSANI M., KHALEDI H. 2003. Agricultural water productivity. Tehran. Iranian National Committee on Irrigation and Drainage pp. 115. ISBN 964-6668-49-6 [In Persian].
  • FAO 2015. The state of food insecurity in the world 2015. Meeting the 2015 International Hunger Targets: Taking stock of uneven progress. Rome. ISBN 978-92-5-108785-5 pp. 62.
  • HASSAN A., SAARI M.Y., TENGKU ISMAIL T.H. 2016. Virtual water trade in industrial products: evidence from Malaysia. Environment. Development and Sustainability. Vol. 19(3) p. 877–894.
  • HOEKSTRA A.Y. 2003. Virtual water trade: proceedings of the international expert meeting on virtual water trade. Value of Water Research Report Series. Delft. UNESCO-IHE. pp. 248.
  • IRICA 2013. Import and export of Iranian business products [online]. Statistics of the Islamic Republic of Iran Customs Administration. [Access 26.02.2016]. Available at: http://www.irica.gov.ir/
  • JIANG Y.K., CAI W.J., DU P.F., PAN W.Q., WANG C. 2015. Virtual water in interprovincial trade with implications for China's water policy. Journal for Cleaner Production. Vol. 87(35) p. 655–665.
  • LIU X., KLEMe J.J., VARBANOV P.S., CUCEK L., QIAN Y. 2017. Virtual carbon and water flows embodied in international trade: a review on consumption-based analysis. Journal for Cleaner Production. Vol. 146(3) p. 20–28.
  • LUO K., TAO F. 2016. Monitoring of forest virtual water in Hunan Province, China, based on HJ-CCD remotesensing images and pattern analysis. International Journal of Remote Sensing. Vol. 37(24) p. 2376–2393.
  • MEKONNEN M.M., HOEKSTRA A.Y. 2011. National water footprint accounts: the green, blue and grey water footprint of production and consumption. Value of Water Research Report. Series No. 50. Vol. 1–2 pp. 94.
  • Ministry of Agriculture 2013. Statistical analysis harvested area and yield of crops in 36 years (1978–2013). Tehran. Lalehyasan pp. 285 [In Persian].
  • MISRA A.K. 2014. Climate change and challenges of water and food security. International Journal of Sustainable Built Environment. Vol. 3(15) p. 153–165.
  • MOLDEN D., FRENKEN K., BARKER R., SVENDSEN M., SADOFF C.F. 2007. Water for food, water for life: A comprehensive assessment of water management in agriculture. London. Earthscan, Colombo. International Water Management Institute pp. 643.
  • ROUHANI N., YANG H., SICHANI S., AFYOUNI M., MOUSAVI S.F, KAMGAR HAGHIGHI A.K. 2008. Food production interchange and virtual water assessment by according to water resources of Iran. Science and Technology of Agriculture and Natural Resources. Vol. 12(46) p. 417–432 [In Persian].
  • TAMEA S., LAIO F., RIDOLFI L. 2016. Global effects of local food-production crises: A virtual water perspective. Science. Vol. 6 p. 18803.
  • UNESCO 2012. The United Nations World Water Development Report 4: Managing water under uncertainty and risk. Paris pp. 68.
  • WWC 2015. Water and green growth: beyond the theory for sustainable future. Vol. 1 [online]. Marseille World Water Council. [Access 10.04.2016]. Available at: http://www.worldwatercouncil.org/fileadmin/world_water_council/documents/publications/forum_documents/ Water_and_ Green_Growth_vol_1.pdf
  • YANG H.. ZEHNDER A. 2007. Virtual water: An unfolding concept in integrated water resources management. Water Resources Research. Vol. 43(16) p. 69–83.
  • YOUSEFI H., MOHAMMADI A. 2017. Prioritize the use of water resources, based on physical and economic productivity of water usage (Case study: Apple crop). 4th Conference on CEPM Environmental Planning and Management. Tehran p. 1–9 [In Persian].
  • ZEITOUN M., ALLAN J.A., MOHIELDEEN Y. 2010. Virtual water ‘flows’ of the Nile Basin, 1998–2004: A first approximation and implications for water security. Global Environmental Change. Vol. 20(1) p. 229–242.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9c012c0-93ad-4512-99c6-806c3337b673
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.