PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and local parameters of self-compressed plasma streams in external magnetic field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the external axial magnetic field on pinching plasma flows generated by a magnetoplasma compressor (MPC) has been studied using magnetic and electric probes. In the presence of an external magnetic field, temperature measurements show two groups of electrons with different temperatures near the plasma stream core. The external magnetic field leads to a noticeable increase in the electric current in the plasma stream, electron temperature, and the formation of the current-sheet-like structure observed in the MPC for the first time.
Czasopismo
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • V. N. Karazin Kharkiv National University Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine and Institute of Plasma Physics and Laser Microfusion Hery 23 St., 01-497 Warsaw, Poland
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • V. N. Karazin Kharkiv National University Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine and Institute of Plasma Physics and Laser Microfusion Hery 23 St., 01-497 Warsaw, Poland
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
autor
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
Bibliografia
  • 1. Garkusha, I. E., Makhlai, V. A., Petrov, Yu. V., Herashchenko, S. S., Ladygina, M. S., Aksenov, N. N., Byrka, O. V., Chebotarev, V. V., Kulik, N. V., Staltsov, V. V., & Pestchanyi, S. (2021). Vapour shielding of liquid-metal CPS-based targets under ELM-like and disruption transient loading. Nucl. Fusion, 61, 116040. DOI: 10.1088/1741-4326/ac26ec.
  • 2. Zdunek, K. (1995). Spreading of impulse plasma within a coaxial accelerator. Surf. Coat. Technol., 74/75, 949–952. DOI: 10.1016/0257-8972(95)80038-7.
  • 3. Zdunek, K., & Karwat, T. (1996). Distribution of magnetic field in the coaxial accelerator of impulse plasma. Vacuum, 47(11), 1391–1394. DOI: 10.1016/S0042-207X(96)00180-7.
  • 4. Garkusha, I. E., Cherednychenko, T. N., Ladygina, M. S., Makhlay, V. V., Petrov, Yu. V., Solyakov, D. G., Staltsov, V. V., Yelisyeyev, D. V., & Hassanein, A. (2014). EUV radiation from pinching discharges of magnetoplasma compressor type and its dependence on the dynamics of compression zone formation. Phys. Scr. T, 161, 014037. DOI: 10.1088/0031-8949/2014/T161/014037.
  • 5. Solyakov, D. G., Petrov, Y. V., Garkusha, I. E., Chebotarev, V. V., Ladygina, M. S., Cherednichenko, T. N., Morgal’, Ya. I., Kulik, N. V., Staltsov, V. V., & Eliseev, D. V. (2013). Formation of the compression zone in a plasma flow generated by a magnetoplasma compressor. Plasma Phys. Rep., 39, 986–992. DOI: 10.1134/S1063780X13110081.
  • 6. Bandura, A. N., Byrka, O. V., Garkusha, I. E., Ladygina, M. S., Marchenko A. K., Makhlay, V. A., & Tereshin, V. I. (2011). Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor. Probl. Atom. Sci. Techn., 1(17), 68–70.
  • 7. Cherednychenko, T. N., Garkusha, I. E., Chebotarev, V. V., Solyakov, D. G., Petrov, Yu. V., Ladygina, M. S., Eliseev, D. V., & Chuvilo, A. A. (2013). Local magnetohydrodynamic characteristics of the plasma stream generated by MPC. Acta Polytech., 53(2), 131–133.DOI: 10.14311/1733.
  • 8. Ladygina, M. S., Marchenko, A. K., Solyakov, D. G., Petrov, Yu. V., Makhlaj, V. A., Yeliseyev, D. V., Garkusha, I. E., & Cherednichenko, T. N. (2016). Dynamics of self-compressed argon and helium plasma streams in the MPC facility. Phys. Scr., 91(7), 074006. DOI: 10.1088/0031-8949/91/7/074006.
  • 9. Astashynski, V. M., Bakanovich, G. I., Kuz’mitskii, A. M., & Min’ko, L. Ya. (1992). Choice of operating conditions and plasma parameters of a magnetoplasma compressor. J. Eng. Phys. Thermophys., 62(3), 386–390. DOI: 10.1007/BF00851755.
  • 10. Giovannini, A. Z., Barendregt, I., Haslinde, T., Hubbs, C., & Abhari, R. S. (2015). Self-confined plasma in a magneto-plasma compressor and the influence of an externally imposed magnetic field. Plasma Sources Sci. Technol., 24, 025007. DOI: 10.1088/0963-0252/24/2/025007.
  • 11. Solyakov, D. G., Volkova, Yu. Ye., Ladygina, M. S., Merenkova, T. M., Marchenko, A. K., Garkusha, I. E., Petrov, Yu. V., Chebotarev, V. V., Makhlai, V. A., Kulik, M. V., Staltsov, V. V., & Yeliseyev, D. V. (2021). Distributions of magnetic field and current in pinching plasma flows: axial magnetic field effect. Eur. Phys. J. Plus, 136, 566. DOI: 10.1140/epjp/s13360-021-01170-z.
  • 12. Solyakov, D. G., Volkova, Yu. Ye., Garkusha, I. E., Marchenko, A. K., Ladygina, M. S., Staltsov, V. V., Petrov, Yu. V., Chebotarev, V. V., Merenkova, T. M., Lakhlai, V. A., & Yeliseyev, D. V. (2021). Measurement of the local electron temperature in selfcompressed plasma stream. Probl. Atom. Sci. Techn., 4(134), 149–153. DOI: 10.46813/2021-134-149.
  • 13. Baksht, F. G., & Rybakov, A. B. (1997). A theory of probes in high-pressure strongly-ionized plasmas. Tech. Phys., 42, 1385–1389. DOI: 10.1134/1.1258882.
  • 14. Zhovtyansky, V. A., & Kolesnikova, E. P. (2013). The study of the near-wall layer in the dense plasma. Probl. Atom. Sci. Techn., 1(83), 240–242.
  • 15. Zhovtyansky, V. A., Kolesnikova, E. P., Lelyukh, Y. I., & Goncharuk, Y. A. (2012). Peculiarities of heat and mass transfer processes in the near-wall region of dense plasma: Studies based on the use of electric probes. Energy Technologies and Resource Saving, 6, 4–16. (in Russian).
  • 16. Demidov, V. I., Ratynskaia, S. V., & Rypdal, K. (2002). Electric probes for plasmas: The link between theory and instrument. Rev. Sci. Instrum., 73(10), 3409–3439. DOI: 10.1063/1.1505099.
  • 17. Popov, T. S. V. K., Dimitrova, M., Pedrosa, M. A., López-Bruna, D., Horacek, J., Kovačič, J., Dejarnac, R., Stöckel, J., Aftanas, M., Böhm , P., Bílkova, P., Hidalgo, C., & Panek, R. (2015). Bi-Maxwellian electron energy distribution function in the vicinity of the last closed flux surface in fusion plasma. Plasma Phys. Control. Fusion, 57(11), 115011. DOI: 10.1088/0741-3335/57/11/115011.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9bb488c-422b-4f74-861d-f740e0975d76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.