PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure drop related to flow maldistribution in a model minichannel plate heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes issues related to pressure drop that accompanies the phenomenon of maldistribution of working fluid between the channels of a model minichannel plate heat exchanger. The research concerns a single exchanger’s plate containing 51 (in every geometry) parallel rectangular minichannels of hydraulic diameters 461 µm, 571 µm, 750 µm, and 823 µm. In addition, more complex geometry has been investigated, equipped with additional diagonal channels (so called extended geometry). The moment of the liquid phase transition through the heat exchanger was recorded at the flow rates ranging from 0.83 g/s to 13.33 g/s in the inlet manifold. The paper discusses the total pressure drop as a function of the flow rate and the characteristic dimension of minichannels, as well as the pressure drop as a function of the time of the fluid passage through the main part of the measuring section in which measurements were done. The resulting profiles correlate with the images of the flow distribution between channels recorded using the fast shutter speed camera, that allows to draw a further conclusions about the specifics of the maldistribution process. The impact of the total pressure drop on the actual range of optimum operating conditions of the heat exchanger was analyzed.
Rocznik
Strony
123--146
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Kays W.M., London A.L.:P Compact Heat Exchangers, Krieger Publishing Company 1984. https://books.google.pl/books?id=A08qAQAAMAAJ
  • [2] Mikielewicz D., Wajs J., Andrzejczyk R., Klugmann M.: Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int. J. Refrig. 68(2016), 226–241. DOI:10.1016/j.ijrefrig.2016.03.005.
  • [3] Tuckerman D.B., Pease R.F.W.: High-performance heat sinking for VLSI. IEEE Electron Device Lett. 2(1981), 5, 126–129. DOI:10.1109/EDL.1981.25367.
  • [4] Teng J.: Fluid Dynamics in Microchannels. Intechopen 2012, 403–436. DOI:10.1002/9783527631445.
  • [5] Mehendale S.S., Jacobi A.M., Shah R.K.: Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl. Mech. Rev. 53(2000), 7, 175–193. http://dx.doi.org/10.1115/1.3097347
  • [6] Kandlikar S.G., Grande W.J.: Evolution of microchannel flow passages– thermohydraulic performance and fabrication technology. Heat Trans. Eng. 24(2003), 1, 3–17. DOI:10.1080/01457630304040.
  • [7] Ornatskii A.P., Vinyarskii L.S.: Heat transfer crisis in a forced flow of underheated water in small-bore tubes. Teplofiz. Vysok. Temp. 3(1965), 441–451.
  • [8] Sturgis J.C., Mudawar I.: Assessment of CHF enhancement mechanisms in a curved, rectangular channel subjected to concave heating. J. Heat Transfer. 121(1999), 2, 394–404. http://dx.doi.org/10.1115/1.2825992.
  • [9] D.D. Hall, Mudawar I.: Ultra-high critical heat flux (CHF) for subcooled water flow boiling? II: high-CHF database and design equations. Int. J. Heat Mass Tran. 42(1999), 8, 1429–1456. DOI:10.1016/S0017-9310(98)00242-7.
  • [10] Mikielewicz D., Mikielewicz J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 30(2010), 16, 2357–2362. DOI:10.1016/j.applthermaleng.2010.05.035.
  • [11] Nacke R., Northcutt B., Mudawar I.: Theory and experimental validation of cross-flow micro-channel heat exchanger module with reference to high Mach aircraft gas turbine engines. Int. J. Heat Mass Tran. 54(2011), 5–6, 1224–1235. DOI:10.1016/j.ijheatmasstransfer.2010.10.028. Elsevier
  • [12] Bahiraei M., Heshmatian S.: Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations. Energy Convers. Manag. 149(2017), 155–167. DOI:10.1016/j.enconman.2017.07.020.
  • [13] Ramos-Alvarado B., Feng B., Peterson G.P.: Comparison and optimization of single-phase liquid cooling devices for the heat dissipation of high-power LED arrays. Appl. Therm. Eng. 59(2013), 1–2, 648–659. DOI:10.1016/j.applthermaleng.2013.06.036.
  • [14] Jajja S.A., Ali W., Ali H.M., Ali A.M.: Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Appl. Therm. Eng. 64(2014), 1–2, 76–82. DOI:10.1016/j.applthermaleng.2013.12.007.
  • [15] Najim M., Feddaoui M.B.: New cooling approach using successive evaporation and condensation of a liquid film inside a vertical mini-channel. Int. J. Heat Mass Tran. 122(2018), 895–912. DOI:10.1016/j.ijheatmasstransfer.2018.02.034.
  • [16] Brutin D., Ajaev V.S., Tadrist L.: Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness. Appl. Therm. Eng. 51(2013), 1–2, 1317–1327. DOI:10.1016/j.applthermaleng.2012.11.017.
  • [17] Zhou J., Zhao X., Ma X., Du Z., Fan Y., Cheng Y., Zhang X.: Clear-days operational performance of a hybrid experimental space heating system employing the novel mini-channel solar thermal & PV/T panels and a heat pump. Sol. Energy. 155(2017), 464–477. DOI:10.1016/j.solener.2017.06.056.
  • [18] Robles A., Duong V., Martin A.J., Guadarrama J.L., Diaz G.: Aluminum minichannel solar water heater performance under year-round weather conditions. Sol. Energy. 110(2014), 356–364. DOI:10.1016/j.solener.2014.09.031.
  • [19] Sakamatapan K., Wongwises S.: Pressure drop during condensation of R134a flowing inside a multiport minichannel. Int. J. Heat Mass Tran. 75(2014), 31–39. DOI:https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.071.
  • [20] JY R., LY L., XS D., RR W., WL P., WM T.: Numerical investigations on characteristics of methane catalytic combustion in micro-channels with a concave or convex wall cavity. Energ. Convers. Manage. 97(2015), 188–195. DOI:10.1016/j.enconman.2015.03.058.
  • [21] Berthier J., Brakke K.A., Furlani E.P., Karampelas I.H., Poher V., Gosselin D., Cubizolles M., Pouteau P.: Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sensors Actuators, B Chem. 206(2015), 258–267. DOI:10.1016/j.snb.2014.09.040.
  • [22] Zhou P., Tarlet D., Wei M., Fan Y., Luo L.: Novel multi-scale parallel minichannel contactor for monodisperse water-in-oil emulsification. Chem. Eng. Res. Des. 121(2017), 233–244. DOI:10.1016/j.cherd.2017.03.010.
  • [23] Illán-Gómez F., García-Cascales J.R., Hidalgo-Mompeán F., LópezBelchí A.: Experimental assessment of the replacement of a conventional fin-and-tube condenser by a minichannel heat exchanger in an air/water chiller for residential air conditioning. Energy Build. 144(2017), 104–116. DOI:10.1016/j.enbuild.2017.03.041.
  • [24] García-Cascales J.R., Illán-Gómez F., Hidalgo-Mompeán F., RamírezRivera F.A., Ramírez-Basalo M.A.: Performance comparison of an air/water heat pump using a minichannel coil as evaporator in replacement of a fin-and-tube heat exchanger. Int. J. Refrig. 74(2017), 558–573. DOI:10.1016/j.ijrefrig.2016.11.018.
  • [25] W. Zhou, W. Deng, L. Lu, J. Zhang, L. Qin, S. Ma, Y. Tang: Laser micro-milling of microchannel on copper sheet as catalyst support used in microreactor for hydrogen production. Int. J. Hydrogen Energy 39(2014), 4884–4894. DOI:10.1016/j.ijhydene.2014.01.041.
  • [26] Kandlikar S.G.: High Flux Heat Removal with Microchannels — A Roadmap of Challenges and Opportunities. Heat Transfer Eng. 26(2005), 8, 5–14. DOI:10.1080/01457630591003655.
  • [27] Qu W., Mudawar I.: Measurement and prediction of pressure drop in twophase micro-channel heat sinks. Int. J. Heat Mass Tran. 46(2003), 15, 2737–2753. DOI:10.1016/S0017-9310(03)00044-9.
  • [28] Motyliński K., Kupecki J.: Modeling the dynamic operation of a small fin plate heat exchanger – Parametric analysis. Arch. Thermodyn. 36(2015), 3, 85–103. DOI:10.1515/aoter-2015-0023.
  • [29] Kupecki J., Badyda K.: Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions. Arch. Thermodyn. 34(2013), 4, 3–21. DOI:10.2478/aoter-2013-0026.
  • [30] Wajs J., Mikielewicz D., Fornalik-Wajs E.: Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions. J. Phys. Conf. Ser. 745(2016), 032063. DOI:10.1088/1742-6596/745/3/032063.
  • [31] Mikielewicz D., Wajs J.: Possibilities of Heat Transfer Augmentation in Heat Exchangers with Minichannels for Marine Applications. Pol. Marit. Res. 24(2017), s1, 133–140. DOI:10.1515/pomr-2017-0031.
Uwagi
EN
The work presented in the paper was funded by the National Science Centre research project No. 2015/19/D/ST8/03201 in years 2016–2019.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9b950a0-7768-4681-b531-159edf4d4044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.