PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new approach to controlling a hydraulic indirect elevator with a variable-speed pump

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a new approach to the issue of controlling an indirect elevator with a bidirectional variable-speed pump and a simple controller based on the position sensor. The aim of this paper is to present a method of controlling the speed of the elevator to ensure smooth movement and proper positioning of the car on the foor, regardless of its load and ropes rigidity. The main feature of the proposed solution is the use of a frequency inverter in vector mode to control the speed of the car in both directions. The control function is based on virtual cams comparing actual measurements from the car position sensor. The proposed control strategy has been experimentally verified on the existing indirect elevator drive, and the obtained results indicate a very high accuracy in maintaining and shaping the speed and positioning of the car. The conducted research confirms the possibility of using a new method of controlling hydraulic and indirect elevators. The benefits of this method include a less complex hydraulic system, the control of overloads in the car and vibrations in the rope system, and the possibility of energy recovery.
Rocznik
Strony
art. no. e91, 2023
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Faculty of Mechanical Engineering, Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Faculty of Mechanical Engineering, Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Faculty of Mechanical Engineering, Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
Bibliografia
  • 1. Al-Hady IHA, Mohammed FM, Mohammed JAK. A review on the employment of the hydraulic cylinder for lifting purposes. Indones J Electr Eng Comput Sci. 2022;28(3):1475-85. https://doi.org/10.11591/ijeecs.v28.i3.pp1475-1485.
  • 2. Xmue R, Wang H, Xie Z, Chen D, Cao T, Zou H. Research on hydraulic system of hydraulic elevator. Proceedings of the 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer. 2016. https://doi.org/10.2991/ mmebc-16.2016.280.
  • 3. Dalala Z, Alwahsh T, Saadeh O. Energy recovery control in elevators with automatic rescue application. J Energy Storage. 2021;43:fdwygfcbbv bcx. https://doi.org/10.1016/j.est.2021. 103168.
  • 4. Jabbour N, Mademlis C. Improved control strategy of a supercapacitor-based energy recovery system for elevator applications. IEEE Trans Power Electron. 2016;31(12):8398-408. https://doi.org/10.1109/TPEL.2016.2516104.
  • 5. Jabbour N, Mademlis C, Kioskeridis I. Improved Performance in a supercapacitor-based energy storage control system with bidirectional DC-DC converter for elevator MOTOR Drives. In: 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester. 2014. https://doi.org/10. 1049/cp.2014.0487.
  • 6. Chen Q, Lin T, Ren H, Fu S. Novel potential energy regeneration systems for hybrid hydraulic excavators. In: Mathematics and computers in simulation (MATCOM). Elsevier; 2019. p. 130-45. https://doi.org/10.1016/j.matcom.2019.02.017.
  • 7. Lin T, Wang Q, Hu B, Gong W. Research on the energy regeneration systems for hybrid hydraulic excavators. Autom Constr. 2010;19(8):1016-26. https://doi.org/10.1016/j.autcon.2010.08.002.
  • 8. Wang T, Wang Q, Lin T. Improvement of boom control performance for hybrid hydraulic excavator with potential energy recovery. Autom Constr. 2013;30:161-9. https://doi.org/10.1016/j. Autcon.2012.11.034.
  • 9. Murthy AS, Taylor DG. Control of a Hydraulic Elevator with a Variable-Speed Pump. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Washington. 2018. https://doi.org/10.1109/IECON.2018.8591577.
  • 10. Stawiński Ł, Kosucki A, Morawiec A, Sikora M. A new approach for control the velocity of the hydrostatic system for scissor lift with fixed displacement pump. Archiv Civ Mech Eng. 2019;19(4):1104-15. https://doi.org/10.1016/j.acme.2019.06.001.
  • 11. Li K, Mannan M, Xu M, Xiao Z. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators. Control Eng Practice. 2001;9(4):367-73. https://doi.org/10.1016/S0967-0661(01) 00003-X.
  • 12. Xu B, Yang J, Yang H. Comparison of energy-saving on the speed control of the VVVF hydraulic elevator with and without the pressure accumulator. Mechatronics. 2005;15(10):1159-74. https://doi.org/10.1016/j.mechatronics.2005.06.009.
  • 13. Yang H, Yang J, Xu B. Computational simulation and experimental research on speed control of VVVF hydraulic elevator. Control Eng Pract. 2004;12(10):563-8. https://doi.org/10.1016/S0967-0661(03)00139-4.
  • 14. Kim C-S, Hong K-S, Kim M-K. Nonlinear robust control of a hydraulic elevator: experiment-based modeling and two-stage lyapunov redesign. Control Eng Pract. 2005;13(6):789-803. https://doi.org/10.1016/j.conengprac.2004.09.003.
  • 15. Zhao B, Quan Z, Li YW, Quan L, Hao Y, Ding L. A hybrid-driven elevator system with energy regeneration and safety enhancement. IEEE Trans Indu Electron. 2020;67(9):7715-26. https://doi.org/10.1109/TIE.2019.2941141.
  • 16. Pena O, Leamy M. An Efficient Architecture for Energy Recovery in Hydraulic Elevators. Int J Fluid Power. 2015;16(2):1-16. https://doi.org/10.1080/14399776.2015.1055991.
  • 17. Xu X, Wang Q. Speed Control of Hydraulic Elevator by Using PID Controller and Self-tuning Fuzzy PID Controller. In: 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). 2017. https://doi.org/10.1109/YAC.2017. 7967521.
  • 18. Hu D, Ding S, Zhu H, Xu B, Yang H. Velocity-tracking Control of the Variable-speed Controlled Hydraulic System: Using Compound Algorithm of PD & Feedforward-feedback Control. In: 2011 Third International Conference on Measuring Technology and Mechatronics Automation. 2011. https://doi.org/10.1109/ ICMTMA.2011.846.
  • 19. Kumar R, Dwivedi PK, Praveen Reddy P, Das AS. Design and Implementation of Hydraulic Motor Based Elevator System. In: 2014 IEEE 6th India International Conference on Power Electronics (IICPE). 2004. https://doi.org/10.1109/IICPE.2014.7115821.
  • 20. Mohammed JAK, Hashim WM, Beram BS. Speed control of hydraulic elevator by using electro-hydraulic servo mechanism. JUBES. 2019;27(4):275-91.
  • 21. Mohammed JAK, Hashim WM, Beram BS. Performance improvement of a conventional hydraulic elevator by using electro-hydraulic servo mechanism. Eng Technol J. 2020;38(5):748-60. https://doi.org/10.30684/etj.v38i5a.367.
  • 22. Zhou Y, Zhang Q, He W. Simulation of Hydraulic Continuous Lifting System of Ofshore Platform Based on Fuzzy PID Control. In: 2016 9th International Symposium on Computational Intelligence and Design (ISCID). 2016. https://doi.org/10.1109/ISCID.2016.2030.
  • 23. Wang W, Cheng C, Zou W, Lu X. Integrated energy saving and position tracking controller for the hydraulic lifting servo system. ISA Trans. 2022;119:196-207. https://doi.org/10.1016/j.isatra. 2021.02.033.
  • 24. Ranjan P, Wrat G, Bhola M, Mishra SK, Das J. A novel approach for the energy recovery and position control of hybrid hydraulic excavator. ISA Trans. 2019;99:387-402. https://doi.org/10.1016/j.isatra.2019.08.066.
  • 25. Ge L, Quan L, Zhang X, Zhao B, Yang J. Efficiency improvement and evaluation of electric hydraulic excavator with speed and displacement variable pump. Energy Convers Manage. 2017;150:62-71. https://doi.org/10.1016/j.enconman.2017.08.010.
  • 26. Wang T, Wang Q. Efficiency analysis and evaluation of energy-saving pressure-compensated circuit for hybrid hydraulic excavator. Autom Constr. 2014;47:62-8. https://doi.org/10.1016/j. Autcon.2014.07.012.
  • 27. Minav T, Laurila LIE, Pyrhönen JJ. Analysis of electro-hydraulic lifting system’s energy efficiency with direct electric drive pump control. Autom Constr. 2013;30:144-50. https://doi.org/10.1016/j.autcon.2012.11.009.
  • 28. Fu S, Chen H, Ren H, Lin T, Miao C, Chen Q. Potential energy recovery system for electric heavy forklift based on double hydraulic motor-generators. Appl Sci. 2020;10:3996. https://doi. org/10.3390/app10113996.
  • 29. Yu Y.-X.; Ahn, K. K (2019) Energy Saving of an Electric Forklift with Hydraulic Accumulator. In: 19th International Conference on Control, Automation and Systems (ICCAS), ICC Jeju. doi: https://doi.org/10.23919/ICCAS47443.2019.8971761.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9b4b2ab-4b2c-49d5-8ecc-9b4b1834f925
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.