Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents the experimental and numerical assessment of natural frequencies and corresponding mode shapes of cross-laminated timber (CLT) beams subjected to a series of damage cases. To this aim, two different cantilever CLT beams consisting of three layers are considered. Damages on the beam are represented by transversal notches (cracks) through the thickness. Six damage scenarios on the beam models are considered. Experimental measurements via the operational modal analysis are performed to extract the natural frequencies and corresponding modes shapes of the beams under the considered damage cases. To verify the experimental results, the finite element modal analysis is also performed by ANSYS® finite element software. The material moduli necessary for the numerical analyses are determined from a single-layer cantilevered timber beam by applying the finite element model updating procedure. The effect of damages (cracks) on the modal characteristics of CLT beams is investigated. Experimental and numerical results show that especially the cracks near the fixed-end are highly effective on the natural frequencies, corresponding mode shapes, and damping ratios of the beams considered. In cases of multiple damages, the serious damage severity causes a change in the order of mode shapes. There is not found a direct relationship between the gluing applied to the piecewise material in the core layer and the modal characteristics. The results from this study can highly benefit the emerging research field of structural health monitoring on timber structures.
Czasopismo
Rocznik
Tom
Strony
716--736
Opis fizyczny
Bibliogr. 44 poz., fot., rys., wykr.
Twórcy
autor
- Department of Civil Engineering, Faculty of Of Technology, Karadeniz Technical University, 61830 Trabzon, Turkey
autor
- Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
autor
- Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
autor
- Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
autor
- Department of Forest Industry Engineering, Faculty of Forestry, Karadeniz Technical University, 61080 Trabzon, Turkey
Bibliografia
- [1] Wood structural elements, Gt. Sov. Encycl. 3rd Edn. Gale Group, Inc. (n.d.). https://encyclopedia2.thefreedictionary.com/Wood+Structural+Elements. Accessed 29 July 2020.
- [2] Özen R. Wood as a building material; it’s benefits and disadvantages, (n.d.). https://www.ktb.gov.tr/EN-98769/wood-as-a-building-material-it39s-benefits-and-disadvan-.html. Accessed 29 July 2020.
- [3] O’Ceallaigh C, Sikora K, Harte AM. The influence of panel lay-up on the characteristic bending and rolling shear strength of CLT. Buildings. 2018. https://doi.org/10.3390/buildings8090114.
- [4] Cross Laminated Timber (CLT): What it is and how to use it, (n.d.). https://www.archdaily.com/893442/cross-laminated-timber-clt-what-it-is-and-how-to-use-it. Accessed 18 Oct 2020.
- [5] FPInnovations. CLT Handbook Canadian Edition. 2013.
- [6] Salawu OSS. Detection of structural damage through changes in frequency: a review. Eng Struct. 1997;19:718–23. https://doi.org/10.1016/S0141-0296(96)00149-6.
- [7] Doebling SW, Farrar CR, Prime MB. A summary review of vibration-based damage identification methods. Shock Vib Dig. 1998;30:91–105. https://doi.org/10.1177/058310249803000201.
- [8] Sohn H, Farrar CR, Hemez F, Czarnecki J. A review of structural health monitoring literature 1996 – 2001. 2003. LA-13976-MS.
- [9] Das S, Saha P, Patro SK. Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civ Struct Health Monit. 2016;6:477–507. https://doi.org/10.1007/s13349-016-0168-5.
- [10] Jassim ZA, Ali NN, Mustapha F, Abdul Jalil NA. A review on the vibration analysis for a damage occurrence of a cantilever beam. Eng Fail Anal. 2013;31:442–61. https://doi.org/10.1016/j.engfailanal.2013.02.016.
- [11] Altunışık AC, Okur FY, Kahya V. Modal parameter identification and vibration based damage detection of a multiple cracked cantilever beam. Eng Fail Anal. 2017;79:154–70. https://doi.org/10.1016/j.engfailanal.2017.04.026.
- [12] Altunışık AC, Okur FY, Kahya V. Structural identification of a cantilever beam with multiple cracks: modeling and validation. Int J Mech Sci. 2017;130:74–89. https://doi.org/10.1016/j.ijmecsci.2017.05.039.
- [13] Yang X, Amano T, Ishimaru Y, Iida I. Application of modal analysis by transfer function to nondestructive testing of wood II:modulus of elasticity evaluation of sections of differing quality in a wooden beam by the curvature of the flexural vibration wave. J Wood Sci. 2003;49:140–4. https://doi.org/10.1007/s100860300022.
- [14] Wang X, Ross RJ, Hunt MO, Erickson JR, Forsman JW. Low frequency vibration approach for assessing performance of wood floor systems. Wood Fiber Sci. 2005;37:371–8.
- [15] Xing H, Xue S, Zong G. Dynamic properties of conventional beam-column timber structure under successive damage. J Asian Archit Build Eng. 2011;10:195–202. https://doi.org/10.3130/jaabe.10.195.
- [16] Schneider J, Stiemer SF, Tesfamariam S, Karacabeyli E, Popovski M. Damage assessment of cross laminated timber connections subjected to simulated earthquake loads. In: World Conf. Timber Eng. 2012, WCTE 2012, vol. 1, pp. 398–406. 2012.
- [17] Wang Z, Li L, Gong M. Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique. Constr Build Mater. 2012;28:831–4. https://doi.org/10.1016/j.conbuildmat.2011.09.001.
- [18] Alves RJ, Magalhaes MDC, Carrasco EVM. Determination of the transverse Young’s modulus (TYM) of wood by means of an input power technique. Constr Build Mater. 2013;42:11–21. https://doi.org/10.1016/j.conbuildmat.2012.12.061.
- [19] Xiao R. Numerical and experimental investigations of vibration-based assessment of timber beams rehabilitated by fibre-reinforced polymer. University of Technology, Sydney. 2014.
- [20] Samali B, Li J, Dackermann U, Choi FC. Vibration-based damage detection for timber structures in Australia. In: Struct. Heal. Monit. Aust., OPUS Open Publications for UTS Scholars, pp. 117–144. 2014. http://hdl.handle.net/10453/17755.
- [21] Saavedra Flores EI, Ajaj RM, Dayyani I, Chandra Y, Das R. Multiscale model updating for the mechanical properties of cross-laminated timber. Comput Struct. 2016;177:83–90. https://doi.org/10.1016/j.compstruc.2016.08.009.
- [22] Castro-Triguero R, Garcia-Macias E, Saavedra Flores E, Friswell MI, Gallego R. Multi-scale model updating of a timber footbridge using experimental vibration data. Eng Comput. 2017;34:754–80. https://doi.org/10.1108/EC-09-2015-0284.
- [23] Kouroussis G, Ben Fekih L, Descamps T, Ben L, Descamps T. Using experimental modal analysis to assess the behaviour of timber elements. Mech Ind. 2017;18:704. https://doi.org/10.1051/meca/2017042.
- [24] Edskär I. Modal analysis, dynamic properties and horizontal stabilisation of timber buildings. Luleå University of Technology. 2018.
- [25] Han F, Wang C, Lu G, Jiang J. Structural health monitoring of timber using electromechanical impedance (EMI) technique. Adv Civ Eng. 2020;1906289:1–9.
- [26] Aloisio A, Pasca D, Tomasi R, Fragiacomo M. Dynamic identification and model updating of an eight-storey CLT building. Eng Struct. 2020;213: 110593. https://doi.org/10.1016/j.engstruct.2020.110593.
- [27] Cao J, Xiong H, Wang J, Kang J. Model updating for timber-framed construction using the full-scale test. Eng Struct. 2020;213: 110560. https://doi.org/10.1016/j.engstruct.2020.110560.
- [28] Kawrza M, Furtmüller T, Adam C, Maderebner R. Parameter identification for a point-supported cross laminated timber slab based on experimental and numerical modal analysis. Eur J Wood Wood Prod. 2021;79:317–33. https://doi.org/10.1007/s00107-020-01641-7.
- [29] Kurent B, Brank B, Ao WK. Model updating of seven-storey cross-laminated timber building designed on frequency-response-functions-based modal testing. Struct Infrastruct Eng. 2021. https://doi.org/10.1080/15732479.2021.1931893.
- [30] ANSYS Inc. Mechanical APDL release 16.0. (2014).
- [31] Ewins DJ. Modal testing: theory, practice and application. 2nd ed. Baldock: Research Studies Press Ltd.; 2000.
- [32] Kerschen G, Golinval JC. Experimental modal analysis. Struci Dyn Res Gr. 2006;1–24.
- [33] Bendat JS, Piersol AG. Random data: analysis and measurements procedures. 4th ed. Hoboken: John Wiley & Sons Inc; 2010.
- [34] Jacobsen NJ, Andersen P, Brincker R. Using enhanced frequency domain decomposition as a robust technique to harmonicexcitation in operational modal analysis. In: Proc. ISMA2006 Int. Conf. Noise Vib. Eng., Lueven, Belgium, 2006. https://doi.org/10.1038/nsb728.
- [35] Hasan MDA, Ahmad ZAB, Leong MS, Hee LM. Enhanced frequency domain decomposition algorithm: a review of a recent development for unbiased damping ratio estimates. J Vibroen-gineering. 2018;20:1919–36. https://doi.org/10.21595/jve.2018.19058.
- [36] Peeters B. System identification and damage detection in civil engineering. K.U. Leuven, Belgium. 2000.
- [37] Peeters B, De Roeck G. Reference based stochastic subspace identification in civil engineering. Inverse Probl Eng. 2000;8:47–74. https://doi.org/10.1080/174159700088027718.
- [38] Yu D-J, Ren W-X. EMD-based stochastic subspace identification of structures from operational vibration measurements. Eng Struct. 2005;27:1741–51. https://doi.org/10.1016/j.engstruct.2005.04.016.
- [39] Mottershead MFJ, Mottershead J, Friswell M. Model updating in structural dynamics: a survey. J Sound Vib. 1993;167:347–75.
- [40] Marwala T. Finite-element-model updating using computional intelligence techniques. London: Springer-Verlag; 2010.
- [41] Zapico JL, González MP, Friswell MI, Taylor CA, Crewe AJ. Finite element model updating of a small scale bridge. J Sound Vib. 2003;268:993–1012. https://doi.org/10.1016/S0022-460X(03)00409-7.
- [42] Altunışık AC, Okur FY, Karaca S, Kahya V. Vibration-based damage detection in beam structures with multiple cracks: modal curvature vs. modal flexibility methods. Nondestruct Test Eval. 2018. https://doi.org/10.1080/10589759.2018.1518445.
- [43] Kahya V, Karaca S, Okur FY, Altunışık AC, Aslan M. Damage localization in laminated composite beams with multiple edge cracks based on vibration measurements, Iran. J Sci Technol Trans Civ Eng. 2021;45:75–87. https://doi.org/10.1007/s40996-020-00393-x.
- [44] Green DW, Winandy JE, Kretschmann DE. Mechanical properties of wood. In: Wood handbook-wood as an engineering material. Centennial, United States Department of Agriculture Forest Service, Madison, WI, pp. 4.1–4.44. 2010. https://doi.org/10.1126/science.46.1195.516-a.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9b25581-24ea-4639-b2de-97eeb15c9f91