PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparison of Large Eddy Simulations and κ-ε Modelling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and k-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.
Słowa kluczowe
EN
jet mixer   mixing   PIV   PLIF   LES  
Rocznik
Strony
251--262
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego Street 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego Street 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego Street 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Bałdyga J., 1989. Turbulent mixer model with application to homogeneous, instantaneous chemical reactions. Chem. Eng. Sci., 44, 1175-1182. DOI: 10.1016/0009-2509(89)87016-2.
  • 2. Bałdyga J., Bourne J.R., 1999. Turbulent mixing and chemical reactions. Wiley, Chichester.
  • 3. Cook A. W., Riley J.J., 1994. A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids, 6, 2868-2870. DOI: 10.1063/1.868111.
  • 4. Icardi M., Gavi E., Marchisio D.L., Olsen M.G., Fox R.O., Lakehal D., 2011. Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Appl. Math. Modell., 35, 1591-1602. DOI: 10.1016/j.apm.2010.09.035.
  • 5. Johnson B.K., Prud’homme R.K., 2003. Chemical processing and micromixing in confined impinging jets. AIChE J., 49, 2264-2282. DOI: 10.1002/aic.690490905.
  • 6. Kölbl A., Kraut M., Wenka A., 2011. Design parameter studies on cyclone type mixers. Chem. Eng. J., 167, 444-454. DOI: 10.1016/j.cej.2010.08.092.
  • 7. Lince F., Marchisio D.L., Barresi A.A., 2008. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J. Colloid Interface Sci., 322, 505-515. DOI: 10.1016/j.jcis.2008.03.033.
  • 8. Liu Y., Cheng C., Prud’homme R.K., Fox R.O., 2008. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem. Eng. Sci., 63, 2829-2842. DOI: 10.1016/j.ces.2007.10.020.
  • 9. Makowski Ł., Bałdyga J., 2011. Large Eddy Simulation of mixing effects on the course of parallel chemical reactions and comparison with k–ɛ modeling. Chem. Eng.Process, 50, 1035-1040. DOI: 10.1016/j.cep.2011.06.003.
  • 10. Makowski Ł., Orciuch W., Bałdyga J., 2012. Large eddy simulations of mixing effects on the course of precipitation process. Chem. Eng. Sci., 77, 85-94. DOI: 10.1016/j.ces.2011.12.020.
  • 11. Marchisio D.L., 2009. Large Eddy Simulation of mixing and reaction in a Confined Impinging Jets Reactor. Comput. Chem. Eng., 33, 408-420. DOI: 10.1016/j.compchemeng.2008.11.009.
  • 12. Michioka T., Komori S., 2004. Large-Eddy simulation of a turbulent reacting liquid flow. AIChE J., 50, 2705-2720. DOI: 10.1002/aic.10218.
  • 13. Midler M., Paul E.L., Whittington E.F., Futran M., Liu P.D., Hsu J., Pan S.H., 1994. US Patent 5 314 506.
  • 14. Mortensen M., Orciuch W., Bouaifi M., Andersson B., 2004. Mixing of a jet in a pipe. Chem. Eng. Res. Des., 82, 357-363. DOI: 10.1205/026387604322870462.
  • 15. Pitsch H., Steiner H., 2000. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids, 12, 2541-2554. DOI: 10.1063/1.1288493.
  • 16. Pope S. B., 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6, 35. DOI: 10.1088/1367-2630/6/1/035.
  • 17. Ranade V.V., 2002. Computational flow modeling for chemical reactor engineering. Academic Press, California.
  • 18. Santillo G., Deorsola F.A., Bensaid S., Russo N., Fino D., 2012. MoS2 nanoparticle precipitation in turbulent micromixers. Chem. Eng. J., 207-208, 322-328,. DOI: 10.1016/j.cej.2012.06.127.
  • 19. Schwertfirm F., Manhart M., 2010. A numerical approach for simulation of turbulent mixing and chemical reaction at high Schmidt numbers, In: Bockhorn H., Mewes D., Peukert W., Warnecke H.J. (Eds.), Micro and Macro Mixing. Springer-Verlag, Berlin, 305-324.
  • 20. A. Tamir, 1994. Impinging-Stream Reactors. Elsevier Science B.V., A
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9a9c767-c2b7-4565-860e-b8df41e922a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.