PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Size of Open Hole on Stability of Compressed Plate Made of Carbon Fiber Reinforced Polymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This manuscript concerns the investigation of the influence of the open hole on stability of the compression plate made of carbon-epoxy composite. Experimental tests carried out on the real plate resulted in a postcritical path from which the critical load value was determined using appropriate approximation method. In parallel, an independent study was carried out based on a numerical analysis using the finite element method (FEM). Investigations were conducted in terms of a linear eigenproblem analysis, from which the value of the bifurcation load was determined for the FEM model of the plate. Its values resulting from the numerical analyses were validated against the experimental results, thus confirming the adequacy of the designed FEM model of the plate. The paper shows that the incremental increase of the hole in the plate monotonically influences the decrease in the critical load of the plate. The largest decrease was observed for the specimen with the largest hole analysed and was 13.5% compared to a plate without a hole. The newness of the paper is the application of interdisciplinary investigation methods to describe the influence of the open hole compression (OHC) on the stability of composite plates. ABAQUS® was used as the tool with which the numerical analyses were realised.
Słowa kluczowe
EN
Bibliografia
  • 1. Agarwal BD, Broutman LJ, Chanshekhara K. Analysis and performance of fiber composites. Fourth edition. Hoboken, New Jersey Wiley; 2018.
  • 2. Soutis C. Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences. 2005; 41: 143–151. https://doi.org/10.1016/j.paerosci.2005.02.004.
  • 3. Kopecki T, Lis T, Mazurek P. Post-critical deformation of thin-walled load-bearing aircraft structure representing fragment of the one-way torsion box. Adv Sci Technol Res J. 2018;12:203–9. https://doi.org/10.12913/22998624/94923.
  • 4. Campbell FC. Manufacturing technology for aerospace structural materials. 1st ed. Amsterdam ; Boston: Elsevier; 2006.
  • 5. Francesconi A, Giacomuzzo C, Kibe S, Nagao Y, Higashide M. Effects of high-speed impacts on CFRP plates for space applications. Advances in
  • Space Research. 2012; 50: 539–548. https://doi.org/10.1016/j.asr.2012.05.012.
  • 6. Stewart R. Rebounding automotive industry welcome news for FRP. Reinforced Plastics. 2011; 55: 38–44. https://doi.org/10.1016/S0034-3617(11)70036-4.
  • 7. Bambach MR. Fibre composite strengthening of thin-walled steel vehicle crush tubes for frontal collision energy absorption. Thin-Walled Structures. 2013; 66: 15–22. https://doi.org/10.1016/j.tws.2013.02.006.
  • 8. Ahmad H, Markina AA, Porotnikov MV, Ahmad F. A review of carbon fiber materials in automotive industry. IOP Conf Ser: Mater Sci Eng. 2020; 971: 032011. https://doi.org/10.1088/1757-899X/971/3/032011.
  • 9. Sreejith M, Rajeev RS. Fiber reinforced composites or aerospace and sports applications. Fiber Reinforced Composites, Elsevier. 2021, 821–859. https://doi.org/10.1016/B978-0-12-821090-1.00023-5.
  • 10. Timoshenko S, Gere JM. Theory of elastic stability. 2nd ed., Dover ed. Mineola, N.Y: Dover Publications; 2009.
  • 11. Jayashankarbabu BS, Karisiddappa. Stability Of Square Plate With Concentric Cutout 2014. https://doi.org/10.5281/ZENODO.1337071.
  • 12. Bazant ZP, Cedolin L, World Scientific (Firm). Stability of structures: elastic, inelastic, fracture and damage theories. Singapore; Hackensack, N.J.: World Scientific Pub. Co. 2010.
  • 13. Banat D, Mania RJ. Comparison of failure criteria application for FML column buckling strength analysis. Composite Structures. 2016; 140: 806–15. https://doi.org/10.1016/j.compstruct.2016.01.024.
  • 14. Teter A, Debski H, Samborski S. On buckling collapse and failure analysis of thin-walled composite lipped-channel columns subjected to uniaxial compression. Thin-Walled Structures. 2014; 85: 324–331. https://doi.org/10.1016/j.tws.2014.09.010.
  • 15. Debski H, Rozylo P, Wysmulski P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures. 2020; 252: 112716. https://doi.org/10.1016/j.compstruct.2020.112716.
  • 16. Banat D, Kolakowski Z, Mania RJ. Investigations of fml profile buckling and post-buckling behaviour under axial compression. Thin-Walled Structures. 2016; 107: 335–344. https://doi.org/10.1016/j.tws.2016.06.018.
  • 17. Ascione F. Influence of initial geometric imperfections in the lateral buckling problem of thin walled pultruded GFRP I-profiles. Composite Structures. 2014; 112: 85–99. https://doi.org/10.1016/j.compstruct.2014.02.002.
  • 18. Wysmulski P. The effect of load eccentricity on the compressed CFRP Z-shaped columns in the weak post-critical state. Composite Structures. 2022; 301: 116184. https://doi.org/10.1016/j.compstruct.2022.116184.
  • 19. Rozylo P. Experimental-numerical test of opensection composite columns stabilitysubjected to axial compression. Archives of Materials Science and Engineering. 2017; 84: 58–64. https://doi.org/10.5604/01.3001.0010.0979.
  • 20. Wysmulski P, Debski H, Falkowicz K. Sensitivity of Compressed Composite Channel Columns to Eccentric Loading. Materials. 2022; 15: 6938. https://doi.org/10.3390/ma15196938.
  • 21. Yang SW, Hao YX, Zhang W, Yang L, Liu LT. Free vibration and buckling of eccentric rotating FG-GPLRC cylindrical shell using first-order shear deformation theory. Composite Structures 2021; 263: 113728. https://doi.org/10.1016/j.compstruct.2021.113728.
  • 22. Turvey GJ, Zhang Y. A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns. Computers & Structures. 2006; 84: 1527–1537. https://doi.org/10.1016/j.compstruc.2006.01.028.
  • 23. Cheng B, Zhao J. Strengthening of perforated plates under uniaxial compression: Buckling analysis. Thin-Walled Structures. 2010; 48: 905–914. https://doi.org/10.1016/j.tws.2010.06.001.
  • 24. Rozylo P, Debski H, Kral J. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression, Lublin 2018, p. 080001. https://doi.org/10.1063/1.5019072.
  • 25. Duarte APC, Díaz Sáez A, Silvestre N. Comparative study between XFEM and Hashin damage criterion applied to failure of composites. Thin-Walled Structures. 2017; 115: 277–288. https://doi.org/10.1016/j.tws.2017.02.020.
  • 26. Motamedi D, Mohammadi S. Fracture analysis of composites by time independent moving-crack orthotropic XFEM. International Journal of Mechanical Sciences. 2012; 54: 20–37. https://doi.org/10.1016/j.ijmecsci.2011.09.004.
  • 27. El-Sawy KM, Ikbal Martini M. Elastic stability of bi-axially loaded rectangular plates with a single circular hole. Thin-Walled Structures. 2007; 45: 122–133. https://doi.org/10.1016/j.tws.2006.11.002.
  • 28. Onodera S, Kawahara K, Yashiro S. Damage progression and strength prediction of open-hole CFRP laminates containing ply gaps. Engineering Fracture Mechanics. 2023; 293: 109681. https://doi.org/10.1016/j.engfracmech.2023.109681.
  • 29. Kaltakci MY. Stress concentrations and failure criteria in anisotropic plates with circular holes subjected to tension or compression. Computers & Structures. 1996; 61: 67–78. https://doi.org/10.1016/0045-7949(96)00009-0.
  • 30. Li W, Cai H, Li C, Wang K, Fang L. Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics. Advanced Composite Materials. 2014; 23: 477–490. https://doi.org/10.1080/09243046.2014.915105.
  • 31. Higuchi R, Okabe T, Nagashima T. Numerical simulation of progressive damage and failure in composite laminates using XFEM/CZM coupled approach. Composites Part A: Applied Science and Manufacturing. 2017; 95: 197–207. https://doi.org/10.1016/j.compositesa.2016.12.026.
  • 32. Higuchi R, Warabi S, Yoshimura A, Nagashima T, Yokozeki T, Okabe T. Experimental and numerical study on progressive damage and failure in composite laminates during open-hole compression tests. Composites Part A: Applied Science and Manufacturing. 2021; 145: 106300. https://doi.org/10.1016/j.compositesa.2021.106300.
  • 33. Jonak J, Karpinski R, Wojcik A, Siegmund M. The Effect of Undercut Anchor Diameter on the Rock Failure Cone Area in Pullout Tests. ASTRJ. 2022; 16.
  • 34. Grzejda R, Warzecha M, Urbanowicz K. Determination of the Preload of Bolts for Structural Health Monitoring of a Multi-Bolted Joint: FEM Approach. Lubricants. 2022; 10: 75. https://doi.org/10.3390/lubricants10050075.
  • 35. Nozdrzykowski K, Grzadziel Z, Grzejda R, Warzecha M, Stepien M. An Analysis of Reaction Forces in Crankshaft Support Systems. Lubricants. 2022; 10: 151. https://doi.org/10.3390/lubricants10070151.
  • 36. Jonak J, Karpinski R, Wojcik A. Numerical analysis of undercut anchor effect on rock. J Phys: Conf Ser. 2021; 2130: 012011. https://doi.org/10.1088/1742-6596/2130/1/012011.
  • 37. Jonak J, Karpinski R, Wojcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J Phys: Conf Ser. 2021; 2130: 012012. https://doi.org/10.1088/1742-6596/2130/1/012012.
  • 38. Grzejda R, Parus A, Kwiatkowski K. Experimental Studies of an Asymmetric Multi-Bolted Connection under Monotonic Loads. Materials. 2021; 14: 2353. https://doi.org/10.3390/ma14092353.
  • 39. Preface. J Phys: Conf Ser. 2023; 2676: 011001. https://doi.org/10.1088/1742-6596/2676/1/011001.
  • 40. Falkowicz K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Composite Structures. 2023; 305: 116474. https://doi.org/10.1016/j.compstruct.2022.116474.
  • 41. Falkowicz K. Validation of Extension-Bending and Extension-Twisting Coupled Laminates in Elastic Element. Adv Sci Technol Res J. 2023; 17: 309–319. https://doi.org/10.12913/22998624/167451.
  • 42. Wysmulski P. Numerical and Experimental Study of Crack Propagation in the Tensile Composite Plate with the Open Hole. Adv Sci Technol Res J. 2023; 17: 249–261. https://doi.org/10.12913/22998624/169970.
  • 43. Wysmulski P. Failure Mechanism of Tensile CFRP Composite Plates with Variable Hole Diameter. Materials. 2023; 16: 4714. https://doi.org/10.3390/ma16134714.
  • 44. Wysmulski P. Load Eccentricity of Compressed Composite Z-Columns in Non-Linear State. Materials. 2022; 15: 7631. https://doi.org/10.3390/ma15217631.
  • 45. Paszkiewicz M, Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures. 2015; 93: 112–121. https://doi.org/10.1016/j.tws.2015.03.009.
  • 46. Falkowicz K, Wysmulski P, Debski H. Buckling Analysis of Laminated Plates with Asymmetric Layup by Approximation Method. Materials. 2023;16: 4948. https://doi.org/10.3390/ma16144948.
  • 47. Rzeczkowski J, Samborski S, Pasnik J. Experimental Verification of the DCB Test Configuration Applicability to Mechanically Coupled Composite Laminates. IOP Conf Ser: Mater Sci Eng. 2018; 416: 012055. https://doi.org/10.1088/1757-899X/416/1/012055.
  • 48. Pasnik J, Samborski S, Rzeczkowski J. Application of the CZM Technique to Delamination Analysis of Coupled Laminate Beams. IOP Conf Ser: Mater Sci Eng. 2018; 416: 012075. https://doi.org/10.1088/1757-899X/416/1/012075.
  • 49. Wysmulski P, Debski H. The analysis of sensitivity to eccentric load of compressed thin-walled laminate columns, Depok, Indonesia. 2019; p. 020006. https://doi.org/10.1063/1.5092009.
  • 50. Wysmulski P, Debski H. Stability Analysis of Composite Columns under Eccentric Load. Appl Compos Mater. 2019; 26: 683–692. https://doi.org/10.1007/s10443-018-9743-8.
  • 51. Wysmulski P, Debski H. The effect of eccentricity of load on the behavior of compressed composite columns in critical state. Polymer Composites. 2019; 40: 70–77. https://doi.org/10.1002/pc.24601.
  • 52. Czapski P, Jakubczak P, Lunt AJG, Kazmierczyk F, Urbaniak M, Kubiak T. Numerical and experimental studies of the influence of curing and residual stresses on buckling in thin-walled, CFRP square-section profiles. Composite Structures. 2021; 275: 114411. https://doi.org/10.1016/j.compstruct.2021.114411.
  • 53. Wysmulski P, Falkowicz K, Filipek P. Buckling state analysis of compressed composite plates with cut-out. Composite Structures. 2021; 274: 114345. https://doi.org/10.1016/j.compstruct.2021.114345.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9a729d9-7e1c-412e-839e-1d4943584b87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.