PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An investigation of abrasive and erosion behaviour of AA 2618 reinforced with Si3N4, AlN and ZrB2 in situ composites by using optimization techniques

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
AA 2618 alloy matrix material is mixed with silicon nitride (Si3N4), aluminium nitride (AlN), and zirconium boride (ZrB2) reinforcement particles. AA 2618 composites were prepared by stir casting method by the following various amounts of weight percentage (wt%): about 0, 2, 4, 6 and 8. AA 2618 composites were analyzed by various mechanical properties such as micro-hardness, tensile strength, and compressive strength. The mechanical properties were increased by increasing wt% of reinforcements. The microstructure and worn surfaces’ analysis have been done for the dispersion and bonding structure of the reinforced particles in composites; also, the AA 2618 composites were involved with different characterizations such as abrasive and erosion wear tests at various wt% to find the wear resistance of the composites. The mass loss was considered as the result of wear testing. Before and after worn surface has been analyzed by scanning electron microscope (SEM), the abrasive and erosion wear test results were analyzed by using traditional and nontraditional techniques like Taguchi method, analysis of variance (ANOVA) and genetic algorithm (GA) to obtain the better wear resistance of various wt% of AA 2618 composites and to study the most influencing input and output process parameters by using different optimization techniques.
Rocznik
Strony
43--54
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • aR&D Centre, Department of Mechanical Engineering, RVS Educational Trust's Group of Institutions, RVS School of Engineering and Technology, Dindigul 624005, Tamilnadu, India
  • Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
  • Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
Bibliografia
  • [1] D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites, International Materials Reviews 39 (1) (1994) 1–23.
  • [2] M. Rosso, Ceramic and metal matrix composites: routes and properties, Journal of Materials Processing Technology 175 (1– 3) (2006) 364–375.
  • [3] M. Gui, D. Wang, J. Wu, C. Li, Erosion of in-situ TiC particle reinforced Al–5Cu composite, Materials Research Bulletin 36 (9) (2001) 1573–1585.
  • [4] B. Venkataraman, G. Sundararajan, The sliding wear behaviour of AlSiC particulate composites – I. Macrobehaviour, Acta Materialia 44 (2) (1996) 451–460.
  • [5] A. Wang, H.J. Rack, Transition wear behavior of SiC-particulate- and SiC-whisker-reinforced 7091 Al metal matrix composites, Materials Science and Engineering A 147 (2) (1991) 211–224.
  • [6] Z.F. Zhang, L.C. Zhang, Y.W. Mai, Wear of ceramic particle- reinforced metal-matrix composites – Part I. Wear mechanisms, Journal of Materials Science 30 (8) (1995) 1961– 1966.
  • [7] M. Roy, B. Venkataraman, V.V. Bhanuprasad, Y.R. Mahajan, G. Sundararajan, The effect of participate reinforcement on the sliding wear behavior of aluminum matrix composites, Metallurgical Transactions A 23 (10) (1992) 2833–2847.
  • [8] A.T. Alpas, J. Zhang, Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites, Metallurgical and Materials Transactions A 25 (5) (1994) 969–983.
  • [9] N.S.M. El-Tayeb, Two-body abrasive behaviour of untreated SC and R-G fibres polyester composites, Wear 266 (1–2) (2009) 220–232.
  • [10] Y. Sahin, K. Ozdin, The effect of abrasive particle size on the wear behavior of MMCs, in: NUMIFORM 2004 Conference, 8th International Conference on Numerical Methods & Applications, Ohio State University, USA, 2004 15–21.
  • [11] S.-Y. Sheu, S.-J. Lin, Particle size effect on the abrasion wear of 20 vol.% SiCp/7075 Al composites, Scripta Materialia 11 (1996) 71–76.
  • [12] Z.F. Zhang, L.C. Zhang, Y.W. Mai, Wear of ceramic particle- reinforced metal-matrix composites – Part I. Wear mechanisms, Materials Science 30 (8) (1995) 1961–1966.
  • [13] S. Sawla, S. Das, Combined effect of reinforcement and heat treatment on the two body abrasive wear of aluminum alloy and aluminum particle composites, Wear 257 (2004) 555–561.
  • [14] Y.J. Kim, H. Chung, S.J.L. Kang, In situ formation of titanium carbide in titanium powder compacts by gas–solid reaction, Composites A 32 (5) (2001) 731–738.
  • [15] J. leziona, B. Formanek, A. Olszówka-Myalska, Obtaining of aluminium alloys matrix composites reinforced with fine dispersed ceramic and intermetallic particles, Materials Engineering 3 (2002) 122–128.
  • [16] E. Fra, A. Janas, A. Kolbus, M. Górny, Synthesis of the ‘‘insitu’’ Al–TiC and Cu–Ti composites by using the reactive gas, Materials Engineering 2 (2000) 48–55.
  • [17] J.G. Lee, H.A. Ma, X.L. Lee, Y.J. Zheng, G.H. Zuo, X. Jia, Preparation and characterization of Al/AlN composites sintered under high pressure, Journal of Materials Science 42 (22) (2007) 9460–9464.
  • [18] P. Sharma, S. Sharma, D. Kandhuja, Production and some properties of Si3N4 reinforced aluminium alloy, Journal of Asian Ceramic Societies 3 (3) (2015) 352–359.
  • [19] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium, Journal of the American Ceramic Society 90 (5) (2007) 1347–1364.
  • [20] N. Mathan Kumar, S. Senthil Kumaran, L.A. Kumaraswamidhas, An investigation of mechanical properties and corrosion resistance of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 composites, Journal of Alloys and Compounds 652 (2015) 244– 249.
  • [21] N. Mathankumar, S. Senthil Kumaran, L.A. Kumaraswamidhas, An investigation of mechanical properties and material removal rate, tool wear rate in EDM machining process of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 composites, Journal of Alloys and Compounds 650 (2015) 318–327.
  • [22] ASM Handbook, Friction, Lubrication and Wear Technology, vol. 18, ASM International, 1992.
  • [23] S. Kannan, S. SenthilKumaran, L.A. Kumaraswamidhas, Optimization of friction welding by Taguchi and ANOVA method on commercial aluminium tube to Al 2025 tube plate with backing block using an external tool, Journal of Mechanical Science and Technology 30 (5) (2016).
  • [24] S. Kannan, S. SenthilKumaran, L.A. Kumaraswamidhas, An investigation on mechanical property of commercial copper tube to aluminium 2025 tube plate by FWTPET process, Journal of Alloys and Compounds 672 (2016) 674–688.
  • [25] S. Kannan, S. SenthilKumaran, L.A. Kumaraswamidhas, An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process, Journal of Alloys and Compounds 666 (2016) 131–143.
  • [26] H.-L. Lee, W.-H. Lu, S.L.I. Chan, Abrasive wear of powder metallurgy Al alloy 6061-SiC particle composites, Wear 159 (2) (1992) 223–231.
  • [27] N. Mathankumar, S. Senthil Kumaran, L.A. Kumaraswamidhas, Wear behaviour of al 2618 alloy reinforced with Si3N4, AlN and ZrB2 in-situ composites at elevated temperatures, Alexandria Engineering Journal 55 (2016) 19–36.
  • [28] N. Mathankumar, S. Senthil Kumaran, L.A. Kumaraswamidhas, Aerospace application on Al 2618 with reinforced – Si3N4, AlN and ZrB2 in-situ composites, Journal of Alloys and Compounds 672 (2016) 238–250.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9a10997-083d-4480-9fb7-d86f2daac6b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.