PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineralogical variations with the mining depth in the Congo Copperbelt: technical and environmental challenges in the hydrometallurgical processing of copper and cobalt ores

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a long time in the Democratic Republic of Congo, the mining of ores for the production of copper cathodes and salts of cobalt was mostly conducted in the near-surface oxidized mineralization of the Congo Copperbelt. An important part of this mineralization is found in geological settings where copper and cobalt mainly exist as mixtures of oxides and sulfides. With the depletion of surface-rich minerals, mining is taking place at depths where sulfide minerals are prevalent. Using current technologies, the hydrometallurgical processing of ores with high levels of sulfide minerals results in poor metal recovery due to their retention in process wastes. These mineral wastes have the propensity to lead to Acid Mine Drainage (AMD) when exposed to rainfall and atmospheric air. Therefore, major changes in the technologies implemented will be needed in order to guarantee higher process efficiencies while endeavoring to uphold environment safeguarding reinforcement. This work aimed to demonstrate the urgency of updating the hydrometallurgical technologies implemented for the processing of copper-cobalt ores with an emphasis put on minimizing the environmental footprint of process wastes. Four copper-cobalt deposits and downstream hydrometallurgical processes were surveyed to get a better understanding of how changes in mineralization occurring in the deposits will influence the processing technologies and practices during the management of process wastes.
Rocznik
Strony
96--114
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
autor
  • Inorganic Chemistry Unit, Department of Chemistry, Faculty of the Sciences, University of Lubumbashi, Likasi Avenue, PO BOX 1825, City of Lubumbashi, Haut-Katanga Province, Democratic Republic of Congo
autor
  • Minerals Engineering and Environmental Research Unit, Department of Industrial Chemistry, Faculty of Applied Sciences, University of Lubumbashi, Kasapa Road, PO Box 1825, City of Lubumbashi, Haut-Katanga Province, Democratic Republic of Congo
autor
  • Department of Metallurgy, University of Johannesburg, Doornfontein Campus, PO Box 17911, Johannesburg, 2028, South Africa
autor
  • Economic Geology Unit, Department of Geology, Faculty of the Sciences, University of Lubumbashi, Kasapa Road, PO Box 1825, City of Lubumbashi, Haut-Katanga Province, Democratic Republic of Congo
  • Department of Exploration Geology, Tenke Fungurume Mining S.A., Airport Road, TFM Building, Lubumbashi, Haut-Katanga province, Democratic Republic of Congo
autor
  • Department of Chemistry and Metallurgy, Research Centre of Minerals Processing, Higher School of Applied Techniques in Lubumbashi, Haut-Katanga Province, Democratic Republic of Congo
Bibliografia
  • 1 Wills BA, Napier-Munn T. In: Mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. 7th Edition. Oxford: Elsevier Science and Technology Books; 2006. p. 4-332.
  • 2 Shengo LM. Etude du recyclage de l’eau résiduaire dans la flottation des minerais oxydés du gisement de Luiswishi (PhD Thesis). In Engineering Sciences. University of Liege; 2013. p. 1-208.
  • 3 Booth G, Cameron A, Fahey G, Lawlord M. Anvil Mining Limited NI 43-101 Technical Report Kinsevere Copper Project, Katanga Province, Democratic Republic of Congo. 2010. Available via, https://secure.kaiserreseach.com//.
  • 4 Chadwick J. CAMEC-The cobalt champion, Reports on what is today probably the leading cobalt miner in the world. International Mining, July. 2008. p. 8-16. Accessible at: www.gfx.infomine.com.
  • 5 Global Business Report. Mining in Africa's Copperbelt Zambia and Democratic Republic of Congo. Engineering and Mining Journal 2014:80e111. Accessible via, https://www.gbreports.com/wp-content/uploads/2014/08/CopperBelt_Mining2014.pdf/.
  • 6 Kambau GN. Determination of the leaching conditions enabling the processing of the mixed ores of copper from the deposit of Kalukuluku in view to use them as feed at the CHEMAF hydrometallurgical plant, An interim report of a project research initiated by the Technical Service and conducted in collaboration of the Inorganic Chemistry. Unit/Chemical Department, Faculty of Sciences, University of Lubumbashi; 2015. p. 1-35.
  • 7 Metorex Ltd. Annual report 2007. 2007. p. 8. Accessible via, http://www.sharedata.co.za/Data/000886/pdfs/METOREX_ar_07.pdf.
  • 8 Mthembu Salter G. Indian Mining Companies in the Democratic Republic of Congo, Emerging Powers and Global Challenges Programme, funded by the Swedish International Development Cooperation Agency and the Danish International Development Agency, facilitated through the Danish Embassy in Pretoria, SAIIA Policy Briefing, vol. 3; 2011. p. 1-4. Accessible via: https://www.africaportal.org//.
  • 9 Yager TR. The Mineral Industry of Congo (Kinshasa): In USGS (United States Geological Survey): US Geological Survey Minerals Yearbook 2010. 2012. p. . p. 11.1-9.
  • 10 Yager TR. The Mineral Industry of Congo (Kinshasa): In USGS (United States Geological Survey): US Geological Survey Minerals Yearbook 2011. 2013. p. 11.1-9.
  • 11 Yager TR. The Mineral Industry of Congo (Kinshasa): In USGS (United States Geological Survey): US Geological Survey Minerals Yearbook 2013. 2016. p. 13.1-13.10.
  • 12 Black C, Zammit M, Dorling S, Readett D. Kipoi Copper Project Stage 2 Preliminary Economic Assessment, Democratic Republic of Congo. Independent Technical Report (NI 43-101) Prepared for Tiger Resources Limited, Cube Consulting Pty Ltd, Perth, Western Australia. Accessed on July the 24th, 2019 and available via. 2011. https://www.resourcedata.org//.
  • 13 West Ltd Mawson. The Dikulushi Mine and Kapulo project. Annual information form for the year ended June 30 2011; 13(22-24):30-2. 2011.
  • 14 West Ltd Mawson. Annual information form for the year ended December, vol. 31; 2015. p. 1-56. 2014. 15 Regal Resources Ltd. Quarterly report - for the period ended 31 March 2015, the Kalongwe Mining Cu-Co Project-Katanga province, Perth. 2015. p. 32. Accessible via, https://www.asx.com.au/asxpdf/20151030/pdf/432l0z4mgnkf64.pdf.
  • 16 Umpula E, Amisi J-C. Transparence des revenus miniers en RDC : Cas de la province du Katanga, Action Contre l'Impunité pour les Droits Humains (ACIDH), Lubumbashi. 2012. p. 14-29. Accessed on December, the 14th 2019 and available at, https://www.business-humanrights.org//.
  • 17 Cellule Technique de Coordination et de Planification Miniére (CTCPM). Bulletin statistiques minières, Exercice 2017, Ministère des Mines, République Démocratique du Congo. 2018. Kinshasa/Gombe, 69p. Accessible via, https://www.mines-rdc.cd/.
  • 18 Kitobo SW. The mining environment of the Haut-Katanga Province, an introductory presentation to the seminar coorganized by the Ministries of Haut-Katanga and Lualaba in view improvement of practices during the management of mining and process wastes in the Congolese Copper belt. The Pullman Hotel Grand Karavia; 2016. 01-03 September 2016.
  • 19 Kitobo SW, Shengo LM. Investing in the mining sector of Haut-Katanga, Opportunities in the mine and energy sectors, the Mining Indaba 2017, 5-9 February 2017, Cape Town, South Africa. 2017 28p
  • 20 Kampunzu AB, Cailteux JLH, Kamona AF, Intiomale MM, Melcher F. Sediment hosted Zn-Pb-Cu deposits in the Central African Copperbelt. Ore Geology Reviews 2009;35(3):263-97.
  • 21 Saad L, Parmentier I, Colinet G, Malaisse F, Faucon M-P, Meerts P, Mahy G. Investigating the VegetationeSoil Relationships on the CoppereCobalt Rock Outcrops of Katanga (D. R. Congo), an Essential Step in a Biodiversity Conservation Plan, Restoration Ecology. The Journal of Society for Ecological Restoration 2013;20(3):405-15.
  • 22 Theron SJ. The origin of the Central African Copperbelt: in a nutshell. In: Proceedings of the Base Metals Conference 2013, 2-4th September, Mpumalanga. The Southern African Institute of Mining and Metallurgy; 2013. p. 21-36.
  • 23 François A. Synthèse géologique sur l`arc cuprifère du Shaba (Rép. du Zaïre). Centenaire Société Belge de Géologie. 1987. p. 15-65.
  • 24 Batumike MJ, Kampunzu AB, Cailteux JH. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, Central African Copperbelt. Gondwana Research 2007;11:432-47.
  • 25 Zientek ML, Bliss JD, Broughton DW, Christie Michael, Denning PD, Hayes TS, Hitzman MW, Horton JD, Frost-Killian Susan, Jack DJ, Master Sharad, Parks HL, Taylor CD, Wilson AB, Wintzer NE, Woodhead Jon. Sediment-Hosted stratabound copper assessment of the Neoproterozoic Roan Group, Central African Copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia, U.S. Geological Survey Scientific Investigations Report 2010-5090-T. 2014. p. 162. https://doi.org/10.3133/sir20110509T.
  • 26 Kipata ML, Delvaux D, Sebagenzi MN, Cailteux J, Sintubin M. Brittle and stress field evolution in the Pan-African Lufilian and its foreland (Katanga, DRC): from orogenic compression to extensional collapse, transpressional inversion and transition to rifting. Geologica Belgica 2013;16:1-17.
  • 27 Cailteux JLH, Kampunzu AB, Lerouge C. The Neoproterozoic Mwashya-Kansuki sedimentary rock succession in the Central African Copperbelt, its Cu-Co mineralization and regional correlations. Gondwana Research 2007;11:414-31.
  • 28 Mambwe P, Kipata ML, Chabu M, Muchez Ph, Lubala RT, Jébrak M, Delvaux D. Sedimentology of the Shangoluwe breccias and timing of the Cu mineralization (Katanga Supergroup, D. R. of Congo). Journal of African Earth Sciences 2017b;132:1-15.
  • 29 Cailteux J. Lithostratigraphy of the Neoproterozoic Shabatype (Zaïre) Roan Supergroup and metallogenesis of associated stratiform mineralization. Journal of African Earth Sciences 1994;19:279-301.
  • 30 Loris NBT, Charlet JM, Pechman E, Clare C, Chabu M, Quinif Y. Caractéristiques minéralogiques, cristallographiques, physico-chimiques et âges des minéralisations uranifères de Luiswishi (Shaba, Zaïre). In: Charlet JM, editor. Colloque International Cornet, Gisements stratiformes de cuivre et minéralisations associées, Mons (1994). Académie Royale des Sciences d'Outre-Mer; 1997. p. 285-306.
  • 31 Muchez Ph, Andre-Mayer AS, El Desouky AH, Reisberg L. Diagenetic origin of the stratiform CueCo deposit at Kamoto in the Central African Copperbelt. Mineralium Deposita 2015; 50:437-47.
  • 32 Haest M, Muchez Ph, Petit JCJ, Vanhaecke F. Cu isotope ratio variations in the Dikulushi Cu-Ag deposit, DRC: Of primary origin or induced by supergene reworking? Economic Geology 2009;104:1055-64.
  • 33 El Desouky H, Muchez Ph, Boutwood A, Tyler R. Postorogenic origin of the stratiform Cu mineralization at Lufukwe, Lufilian Foreland, Democratic Republic of Congo. Economic Geology 2008;103:555-82.
  • 34 El Desouky HA, Muchez P, Cailteux J. Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geology Reviews 2009;36(4):315-32.
  • 35 Mambwe P, Milan L, Batumike J, Lavoie S, Jébrak M, Kipata L, Chabu M, Mulongo S, Lubala RT, Delvaux D, Muchez Ph. Lithology, petrography and Cu mineralisation of the Neoproterozoic glacial Mwale Formation at the Shanika syncline (Tenke Fungurume, Congo Copperbelt; Democratic Republic of Congo). Journal of African Earth Sciences 2017a;129: 898-909.
  • 36 François A. Stratigraphie, tectonique et minéralisation dans l`arc cuprifère du Shaba. In: Bartholomé P, editor. Gisements Stratiformes et Provinces Cuprifères. Centenaire de la Société Géologique de Belgique, Liége; 1974. p. 79-101.
  • 37 Van Wilderode J, El Desouky H, Elburg M, Vanhaecke F, Muchez Ph. Metal sources for the Katanga Copperbelt deposits (DRC): insights from Sr and Nd isotope ratios. Geologica Belgica 2014;17(2):137-47.
  • 38 François A. La partie centrale de l'Arc cuprifère du Katanga : Tervuren (Belgique). African Geosciences collection 2006;109:1-70.
  • 39 Schuh W, Leveille RA, Fay I, North R. Geology of the Tenke-Fungurume sediment-hosted strata-bound coppercobalt district, Katanga, Democratic Republic of Congo, vol. 16. Society of Economic Geologists, Special Publication; 2012. p. 269-301.
  • 40 Mambwe MP, Chabu M, Lubala RT, Kipata ML. Altération de la dolomite siliceuse cellulaire (RSC) et développement de la minéralisation cuprocobaltifère du Sous-groupe des Mines (District Minier de Tenke-Fungurume, Katanga - R.D. Congo) : Implications sur la mise au point de méthodes spécifiques d’exploration en « Green field », 24rd Colloquium of African Geology. 2013. p. 156.
  • 41 Fay HI. Studies of Copper-Cobalt Mineralization at Tenke-Fungurume, Central African Copperbelt; and Developments in Geology between 1550 and 1750 A.D, A Dissertation Submitted to the Faculty of the Department of Geosciences in partial fulfillment of the requirements for the Degree of Doctor of Philosophy. The Graduate College, University of Arizona; 2014. p. 426.
  • 42 Burgess S. Sustainability of strategic minerals in southern africa1 and potential conflicts and partnerships, U.S. Air Force Academy, Institute for National Security Studies, USAFA, CO, 80840. 2010. p. 15-7. Accessible via, https://www.mmta.co.uk/wp-content/uploads/2017/02/Strategic-metals-US-Air-War-College-May-2011.pdf.
  • 43 Gorham M, Knight S. Congo Copper and Cobalt - Business and Financial letter. San Francisco: The Research Department, Federal Bank of; 1977.
  • 44 Coakley GJ. The mineral industry of Congo (Kinshasa), U.S. Geological Survey Minerals Yearbook; 2001. 27.1-27.7.Accessible via, https://s3-us-west-2.amazonaws.com/prdwret/assets/palladium/production/mineral-pubs/country/2001/cgmyb01.pdf.
  • 45 Craig JR, Vaughan DJ. Cobalt-bearing assemblages from Shinkolobwe deposit. Katanga, Zaire, American Mineralogist 1979;64:136-9.
  • 46 Fisher KG. Cobalt processing developments, The Southern African Institute of Mining and Metallurgy 6th Southern African Base Metals Conference, vols. 18-20; 2001. p. 237-58. July 2011, Phalaborwa.
  • 47 Habashi F, editor. Handbook of extractive metallurgy, Volume II: Primary metals, secondary metals and light metals. Weinhein, Federal Republic of Germany: Wiley-VCH; 1997.
  • 48 Könighofer T, Archer SJ, Bradford L. A cobalt solvent extraction investigation in Africa's Copper Belt, Hydrometallurgy Conference 2009, 24-26th, February, Gauteng, South Africa. The Southern African Institute of Mining and Metallurgy; 2009. p. 329-40.
  • 49 Mudd GM, Weng Z, Jowitt SM, Turnbull ID, Graedel TE. Quantifying the recoverable resources of by-product metals: The case of cobalt, Ore Geology. Review 2013;55:87-98.
  • 50 Ndalamo J. Aqueous behaviour of cobalt in the presence of copper, iron and sulphur dioxide with and without microwave processing (MSc Thesis). In: Chemistry, Faculty of Science, University of Johannesburg; 2008.
  • 51 Takeuchi K, Strongman JE, Maeda S, Tan C. The World Copper Industry: Its Changing Structure and Future Prospects. Washington, D.C.: World Bank Staff Commodity Working Papers No15; 1986. p. 129-30.
  • 52 Young D. Transitioning from Explorer to Developer, The Kipoi Copper Project - DRC, A presentation from the Managing Director, Tiger Resources Limited. 2008. p. 41p. Accessible via, http://www.equitystory.com/Download/Companies/tiger/Presentations/TGS_Presentation_March2008.pdf.
  • 53 West Ltd Mawson. Technical update-Kapulo Copper ProjecteDRC/Zambia. ASC Release: Perth, Western Australia: Mawson West Ltd.; 2006. p. 7. accessible via, https://secure.kaiserresearch.com/i/jk/tr16/TRMWE20110630.pdf.
  • 54 Brabham G, Winterbottom J, Abbott J, De Klerk Q. National Instrument 43-101, Technical Report Kapulo Copper Project (DRC). A Feasibility Study Update prepared by Mawson West Limited. 2014. Accessed on December, the 14th, 2019 and available at: https://www.marketwatch.com//.
  • 55 Kalenga NM, Frenay J, Mukendi K, De Donato P, Kaniki TA. Inventory of sites of production, storage and disposal of mineral wastes in Katanga and assessment of environmental impacts, A report of a scientific cooperation project 2005. No6312PS508 achieved by the University of Lubumbashi (UNILU), the University of Liege (ULg) and the National Polytechnic Institute of Lorraine (INPL) funded by the France speaking countries Academic Agency (FAA); 2006. p. 216.
  • 56 Cailteux J. In: Friedrich GH, editor. Diagenetic sulfide mineralization within the stratiform copper-cobalt deposit of west Kambove (Shaba-Zaire), Sequences of mineralization in sediment-hosted copper deposits (Parts 2), Geology and Metallogeny of copper deposits. Springer-Verlag Berlin Heidelberg; 1986. p. 398-411. et al.
  • 57 François A. Stratigraphie, tectonique et minéralisations dans l’arc cuprifère du Shaba (République du Zaïre), Centenaire de la Société Géologique de Belgique, Gisement stratiformes et cuprifères, Liége. 1976. p. 79-101.
  • 58 Taylor CD, Causey JD, Denning PD, Hammarstrom JM, Hayes TS, Horton JD, Kirschbaum MJ, Parks HL, Wilson AB, Wintzer NE, Zientek ML. Descriptive Models, Grade-tonnage Relations, and Databases for the Assessment of Sedimenthosted Copper Deposits - with Emphasis on Deposits in the Central Africa Copperbelt, Democratic Republic of the Congo and Zambia. U.S. Geological Survey Scientific Investigations Report 2010-5090-J. 2013. p. 154. Available via, https://pubs.er.usgs.gov/publication/sir20105090J.
  • 59 Kapya NF. Optimisation de quelques paramètres de l’extraction par solvant du cuivre avec le Mextral 984H (Cas de la production hydrométallurgique du cuivre aux usines de SHITURU), An interim report of research initiated by the Gécamines’Department in charge of metallurgical surveys/Likasi in collaboration with the Chemical and Metallurgy Department of the Higher School of Applied techniques in Lubumbashi (ISTALU), Lubumbashi. 2019. p. 1-50.
  • 60 Mbuya IB, Tshibanda NP, Muhungu TS, Kawama NF, Kasongo KG, Nkulu WNG. Lixiviation Simultanée du Cuivre et Cobalt dans le Système CuFeS2-Fe3O4-Co2O3 régie par la boucle Fe2+/Fe3+. Congosciences 2019;7(2):70-80. Accessible via, http://congosciences.cd/images/vol7-juillet2019/MBUYA_2019_Vol_7_N_2_Art_1.pdf.
  • 61 Kugeria PM, Mwangi I, Wachira J, Njoroge P. Copper extraction by wet chemical method. Journal of Sustainable Mining 2018;17(4):202-8.
  • 62 Rawlings DE. Heavy metal mining using microbes. Annual Review of Microbiology 56 2002:65-91.
  • 63 Yin Shenghua, Wang Leiming, Kabwe Eugie, Chen Xun, Yan Rongfu, An Kai, Zhang Lei, Wu Aixiang. Copper bioleaching in China: Review and Prospects. Minerals 2018;8(32):1-26.
  • 64 Nkulu G, Gaydardzhiev S, Mwema E. Statistical analysis of bioleaching copper, cobalt and nickel from polymetalic concentrate originating from Kamoya deposit in the Democratic Republic of Congo. Minerals Engineering 2013;48:77-8.
  • 65 Pradhan D, Pal S, Sukla LB, Chaudhury GR, Das T. Bioleaching of low-grade copper ore using indigenous microorganisms. Indian Journal of Experimental Biology15 2008:588-92.
  • 66 Rawlings DE, Tributsch H, Hansford G. Reasons why ' Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology145; 1999. p. 5-13.
  • 67 Rao DV, Shivannavar CT, Gaddad SM. Bioleaching of copper from chalcopyrite ore by fungi. Indian Journal of Experimental Biology 40 2002:319-24.
  • 68 Sheoran AS, Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering 2006;19:105-16.
  • 69 Skousen JG, Sexstone A, Ziemkiewicz PF. Acid mine drainage control and treatment. Reclamation of drastically disturbed lands, vol. 41. American Society of Agronomy and American Society for Surface Mining and Reclamation, Agronomy; 2000. p. 1-74.
  • 70 Stoltz E. Phytostabilisation - use of wetland plants to treat mine tailings, Doctoral thesis. Department of Botany, Stockholm University; 2004. p. 1-45. Accessible via, https://www.diva-portal.org/smash/get/diva2:192144/FULLTEXT01.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d998ab88-6701-4b7b-a1ab-c0443fbbb482
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.