PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study of Physicochemical and Bacteriological Quality of Treated Wastewater by the New Aourir Plant (Southwestern of Morocco) Using Activated Sludge Technology in a Semi-Arid Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to use the purified wastewater for the irrigation of a golf course in the Taghazout area (Southwestern of Morocco), this study was conducted to evaluate the physicochemical and bacteriological quality of the treated wastewater in the new Aourir plant (Activated Sludge technology). In order to achieve these objectives, three types of water were analyzed: raw water (RW), biologically treated water (BTW) and water treated by ultraviolet radiation (UV-TW). The physicochemical parameters analyzed were Temperature, pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), five-day Biological Oxygen Demand (BOD5), Total Suspended Solids (SS), Nitrate (NO3), and Orthophosphates (PO4). Otherwise, the analyzed biological parameters are Total Coliforms (TC), Fecal Coliforms (FC), Escherichia coli (E. coli), and Fecal Streptococci (FS). The physicochemical parameters showed that temperature is always lower than 30°C, the pH is close to neutrality and a strong fluctuation of the high electrical conductivity (2700 μS/cm) occurs in UV-TW. At all stages of wastewater treatment, COD, BOD5, SS, NO3 and PO4 were below the limit values recommended by Moroccan standards. The bacteriological results showed a high level of bacterial contamination in RW and BTW, but in UV-TW the loads did not exceed 3 log10. The average loads of TC, FC, E. coli and FC in UV-TW were 2.13, 1.67, 1.77, and 2 (log10 CFU/100ml) respectively. Activated sludge treatment combined with UV has demonstrated sufficient quality to reuse treated water in irrigation; however, the UV treatment requires control to avoid any effect on the microbiological and physicochemical quality of green spaces and groundwater.
Rocznik
Strony
83--98
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Laboratory of Aquatic Systems: Marine and continental ecosystems, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
  • Laboratory of Aquatic Systems: Marine and continental ecosystems, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
  • Laboratory of Aquatic Systems: Marine and continental ecosystems, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
  • Laboratory of Aquatic Systems: Marine and continental ecosystems, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
  • Faculty of Sciences, Abdelamalek Essadi University, Tetouan, Morocco
Bibliografia
  • 1. Abdulla, F., & Farahat, S. 2020. Impact of Climate Change on the Performance of Wastewater Treatment Plant : Case study Central Irbid WWTP (Jordan). Procedia Manufacturing, 44, 205-212. https://doi.org/10.1016/j.promfg.2020.02.223
  • 2. Adouani, N., Limousy, L., Lendormi, T., & Sire, O. 2015. N2O and NO emissions during wastewater denitrification step : Influence of temperature on the biological process. Comptes Rendus Chimie, 18(1), 15-22. https://doi.org/10.1016/j.crci.2014.11.005
  • 3. AFNOR 1983. Recueil de normes françaises : eau, méthodes d’essai, 2e édition, Paris, 624 p.
  • 4. Angelakis, A., Do Monte, M. M., Bontoux, L., & Asano, T. (1999). The status of wastewater reuse practice in the Mediterranean basin : Need for guidelines. Water research, 33(10), 2201-2217.
  • 5. Arcand, Y., Paris, J., Rouleau, D., & Mayer, R. 2005. Effets de paramètres d’opération sur la décantation de boues biologiques d’une unité de traitement d’eaux usées de raffinerie. Revue des sciences de l’eau, 2(1), 43-69. https://doi.org/10.7202/705023ar
  • 6. Baharvand, S., & Daneshvar, M.R.M. 2019. Impact assessment of treating wastewater on the physiochemical variables of environment : A case of Kermanshah wastewater treatment plant in Iran. Environmental Systems Research, 8(1), 1-11. https://doi.org/10.1186/s40068–019–0146–0
  • 7. Bali, M., Gueddari, M., & Boukchina, R. 2010. Treatment of secondary wastewater effluents by infiltration percolation. Desalination, 258 (1-3), 1-4. https://doi.org/10.1016/j.desal.2010.03.041
  • 8. Benyakhlef, M., Naji, S., & Belghyti, D. 2007. Caractérisation des rejets liquides d’une conserverie de poissons. Bull. Soc. Pharm. Bordeaux, 146, 225-234.
  • 9. Boehm, A.B., & Sassoubre, L. M. 2014. Enterococci as indicators of environmental fecal contamination. Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, pp. 1–31.
  • 10. Bouknana, D., Hammouti, B., Salghi, R., Jodeh, S., Zarrouk, A., Warad, I., Aouniti, A., & Sbaa, M. 2014. Physicochemical characterization of olive oil mill wastewaters in the eastern region of Morocco. J. Mater. Environ. Sci, 5(4), 1039-1058. http://dx.doi.org/10.22159/jcr.2018v5i5.28840
  • 11. Bourouache, M., Mimouni, R., Ait Alla, A., Hamadi, F., El Boulani, A., & Bihadassen, B. 2019. Bacteriological and physicochemical quality of treated wastewater of the Mzar treatment plant. Applied Water Science, 9(4), 86. http://dx.doi.org/10.1007/s13201–019–0958–0
  • 12. Boutayeb, M., Bouzidi, A., & Fekhaoui, M. 2012. Etude de la qualité physico-chimique des eaux usées brutes de cinq villes de la région de la Chaouia– Ouardigha (Maroc). Bulletin de l’Institut Scientifique, 145-150.
  • 13. Cha, W., Choi, H., Kim, J., & Kim, I. S. 2004. Evaluation of wastewater effluents for soil aquifer treatment in South Korea. Water Science and Technology, 50(2), 315-322. https://doi.org/10.2166/wst.2004.0147
  • 14. Chapman, D.V. 1996. Water quality assessments : A guide to the use of biota, sediments and water in environmental monitoring. CRC Press.
  • 15. Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S., & Torretta, V. 2018. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10(1), 86. https://doi.org/10.3390/su10010086
  • 16. Deronzier, G., Schétrite, S., Racault, Y., Canler, J.P., Liénard, A., Héduit, A., & Duchène, P. 2002. Traitement de l’azote dans les stations d’épuration biologique des petites collectivités. Cemagref Editions, pp.78. Documentation technique FNDAE, n° 25, 2–85362–555–9. ffhal-02580469.
  • 17. Bachi, E.O., Halilat, T.M., Bissati, S. & Mehanna, F.S. 2020. Performance of two free biomass biological wastewater treatment processes (Aerated Lagoon and Activated Sludge) in Ouargla area, Algeria with referring to re-use the treated water in aquaculture. Egyptian Journal of Aquatic Biology and Fisheries, 24(7-Special issue), 575-592. https://doi.org 10.21608/EJABF.2020.123156
  • 18. Eddabra R. 2011. Evaluation de la Contamination bactériologique des eaux usées des stations d’épuration du grand Agadir : isolement, caractérisation moléculaire et antibio-résistance des espèces du genre Vibrio. Thèse de doctorat, Ibn Zohr, Strasbourg, pp.146.
  • 19. El Haouti, R., Et-Taleb, S., Abbaz, M., Lhanafi, S., Azougarh, Y., Ez-Zahery, M., Aba-Aaki, R., & El Alem, N. 2015. The use of titaniferous sieved sand for the treatment of domestic wastewater in the percolation infiltration process. Arab J Chem Environ Sci, 2(2), 58-71.
  • 20. Et-Taleb, S., Elhaouti, R., Abbaz, M., Lhanafi, S., Ez-Zahery, M., Aba-Aaki, R., & El Alem, N. 2014. Comparaison du phénomène de colmatage des eaux usées à travers deux types de sables : L’un vierge et l’autre utilisé lors de traitement par infiltration (Comparison of the clogging phenomenon wastewater through two types of sand : One virgin and one used during treatment with infiltration). J. Mater. Environ. Sci, 5(6), 1906-1912.
  • 21. Fatta-Kassinos, D., Kalavrouziotis, I. K., Koukoulakis, P.H., & Vasquez, M. 2011. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Science of the Total Environment, 409(19), 3555-3563. https://doi.org/10.1016/j.scitotenv.2010.03.036
  • 22. Finch, G.R., & Smith, D.W. 1986. Batch coagulation of a lagoon for fecal coliform reductions. Water Research, 20(1), 105-112. https://doi.org/10.1016/0043–1354(86)90221–6
  • 23. Fonteneau, L., Da Silva, N.J., Fabre, L., Ashton, P., Torpdahl, M., Müller, L., Bouchrif, B., El Boulani, A., Valkanou, E., & Mattheus, W. 2017. Multinational outbreak of travel-related Salmonella Chester infections in Europe, summers 2014 and 2015. Eurosurveillance, 22(7), 30463.
  • 24. Geldreich, E.E. 1966. Sanitary significance of fecal coliforms in the environment. US Department of the Interior, Federal Water Pollution Control Administration.
  • 25. Habbari, K., Tifnouti, A., Bitton, G., & Mandil, A. 2000. Geohelminthic infections associated with raw wastewater reuse for agricultural purposes in Beni-Mellal, Morocco. Parasitology international, 48(3), 249-254. https://doi.org/10.1016/S1383–5769(99)00026–4
  • 26. Hachemi, O.E., Halouani, H.E., Meziane, M., Torrens, A., & Sbaa, M. 2012. Etude des performances épuratrices dans une station de traitement des eaux usées par lagunage en climat désertique (Oasis de Figuig–Maroc): Aspect bactérien et organique. Rev. Microbiol. Ind. San et Environn, 6(1), 84–97.
  • 27. Haité, H.E. 2010. Traitement des eaux usées par les réservoirs opérationnels et réutilisation pour l’irrigation, Engineering Sciences. Ecole Nationale Superieure des Mines de Saint-Etienne, 2010. French. <NNT : 2010EMSE0569>. 205.
  • 28. Hamoda, M., Al-Ghusain, I., & Al-Mutairi, N. 2004. Sand filtration of wastewater for tertiary treatment and water reuse. Desalination, 164(3), 203-211. https://doi.org/10.1016/S0011–9164(04)00189–4
  • 29. Hassoune, E.M., Bouzidi, A., Koulali, Y., & Hadarbach, D. 2006. Effets des rejets liquides domestiques et industriels sur la qualité des eaux souterraines au nord de la ville de Settat (Maroc). Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie, 28, 61–71, 11.
  • 30. ISO 9308–1. 2000. Water quality–Detection and enumeration of Escherichia coli and coliform bacteria – Part 1: Membrane filtration method.
  • 31. Joel, C., Mwamburi, L.A., & Kiprop, E.K. 2018. Use of slow sand filtration technique to improve wastewater effluent for crop irrigation. Microbiology Research, 9(1), 14-18.
  • 32. Köck-Schulmeyer, M., Villagrasa, M., de Alda, M.L., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. 2013. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the total environment, 458, 466-476. https://doi.org/10.1016/j.scitotenv.2013.04.010
  • 33. Lazarova, V., Janex, M., Fiksdal, L., Oberg, C., Barcina, I., & Pommepuy, M. 1998. Advanced wastewater disinfection technologies : Short and long term efficiency. Water Science and Technology, 38(12), 109-117. https://doi.org/10.1016/ S0273–1223(98)00810–5
  • 34. Maiga, A., Konate, Y., Wethe, J., Denyigba, K., Zoungrana, D., & Togola, L. 2006. Performances épuratoires d’une filière de trois étages de bassins de lagunage à microphytes sous climat sahélien : Cas de la station de traitement des eaux usées de l’EIER. Sud sciences & technologies, 14, 1–9.
  • 35. Makhoukh, M., Sbaa, M., & Berrahou, A. 2011. Contribution à l’étude physico-chimique des eaux superficielles de l’oued Moulouya (Maroc Oriental). Larhyss Journal, 9, 21.
  • 36. Malik, A., & Ahmad, M. 2002. Seasonal variation in bacterial flora of the wastewater and soil in the vicinity of industrial area. Environmental monitoring and assessment, 73(3), 263-273.
  • 37. Mandi, L., & Ouazzani, N. 2013. Water and wastewater management in Morocco: Biotechnologies application. Sustainable Sanitation Practice, 1(14), 9-16.
  • 38. Merghem, K.A., El, H., Mokhtari, O., Alnedhary, A.A., Belkhir, H., Dssouli, K., Ait, N., Elkhadir, G., & Chetouani, A. 2016. Quality assessment and potential reuse of treated wastewater by activated sludge (Sana’a city, Yemen). Moroccan Journal of Chemistry, 4(3), 731-742.
  • 39. Mezrioui, N., & Baleux, B. 1994. Resistance patterns of E. coli strains isolated from domestic sewage before and after treatment in both aerobic lagoon and activated sludge. Water Research, 28(11), 2399-2406.
  • 40. Bulletin officiel. 2002. Ministère de l’environnement du Maroc. 2002. Normes marocaines, Bulletin officiel du Maroc, N° 5062 du 30 ramadan 1423. Rabat.
  • 41. Mimouni, R., Yacoubi, B., & Eddabra, R. 2011. Physicochemical quality of wastewater purified by infiltration-percolation : Case of the plant of Ben Sergao (south-western Morocco) after ten years of running. Rev. Microbiol. Ind. San et Environn, 5(1), 101-114.
  • 42. Mouhanni, H., Bendou, A., & Houari, M. 2013. Study of the Wastewater Purifying Performance in the M’Zar Plant of Agadir, Morocco. Environment and Pollution, 2(3), p20. https://doi.org/10.5539/ep.v2n3p20
  • 43. Omura, T., Onuma, M., Aizawa, J., Umita, T., & Yagi, T. 1989. Removal Efficiencies of Indicator Micro-Organisms in Sewage Treatment Plants. Water Science and Technology, 21(3), 119-124. https://doi.org/10.2166/wst.1989.0088
  • 44. Pearson, H., Mara, D., Mills, S., & Smallman, D. 1987. Physico-chemical parameters influencing faecal bacterial survival in waste stabilization ponds. Water science and technology, 19(12), 145-152.
  • 45. Petala, M., Tsiridis, V., Samaras, P., Zouboulis, A., & Sakellaropoulos, G. 2006. Wastewater reclamation by advanced treatment of secondary effluents. Desalination, 195(1-3), 109-118.
  • 46. Qadir, M., Wichelns, D., Raschid-Sally, L., McCornick, P.G., Drechsel, P., Bahri, A., & Minhas, P. 2010. The challenges of wastewater irrigation in developing countries. Agricultural water management, 97(4), 561-568. https://doi.org/10.1016/j.agwat.2008.11.004
  • 47. Quevedo, N., Sanz, J., Lobo, A., Temprano, J., & Tejero, I. 2012. Filtration demonstration plant as reverse osmosis pretreatment in an industrial water treatment plant. Desalination, 286, 49-55. https://doi.org/10.1016/j.desal.2011.10.037
  • 48. Raji, M., Ibrahim, Y., Tytler, B., & Ehinmidu, J. 2015. Faecal Coliforms (FC) and Faecal Streptococci (FS) ratio as tool for assessment of water contamination : A case study of River Sokoto, Northwestern Nigeria. The Asia Journal of Applied Microbiology, 2(3), 27-34.
  • 49. Rodier, J., Legube, B., & Merlet, N. 1959. L’analyse de l’eau-9e éd.: Eaux naturelles, eaux résiduaires, eau de mer (Water Analysis-9th ed: Natural Waters, Waste Waters, Seawater 2009). Dunod
  • 50. Rosenfeld, L., McGee, C., Robertson, G., Noble, M., & Jones, B. 2006. Temporal and spatial variability of fecal indicator bacteria in the surf zone off Huntington Beach, CA. Marine environmental research, 61(5), 471-493. https://doi.org/10.1016/j.marenvres.2006.02.003
  • 51. Shahalam, A. 1989. Wastewater effluent vs. Safety in its reuse: State-of-the-art. The Journal of Environmental Sciences, 32(5), 35-42. https://doi.org/10.17764/jiet.1.32.5.emq35781761m2658
  • 52. Sharrer, M.J., Summerfelt, S.T., Bullock, G.L., Gleason, L.E., & Taeuber, J. 2005. Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquacultural Engineering, 33(2), 135-149. https://doi.org/10.1016/j.aquaeng.2004.12.001
  • 53. Tahri, M., Larif, M., Quabli, H., Taky, M., Elamrani, M., El Midaoui, A., Benazouz, K., & Khimani, M. 2015. Etude et suivi des performances des traitements primaire et secondaire des eaux usées de la station d’épuration de Marrakech. European Scientific Journal, J 11(17), 139–154.
  • 54. Tarchouna, L.G., Merdy, P., Raynaud, M., Pfeifer, H.-R., & Lucas, Y. 2010. Effects of long-term irrigation with treated wastewater. Part I: Evolution of soil physico-chemical properties. Applied Geochemistry, 25(11), 1703-1710. https://doi.org/10.1016/j.apgeochem.2010.08.018
  • 55. Vaz-Moreira, I., Nunes, O.C., & Manaia, C.M. 2014. Bacterial diversity and antibiotic resistance in water habitats : Searching the links with the human microbiome. FEMS microbiology reviews, 38(4), 761-778. https://doi.org/10.1111/1574–6976.12062
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9945c83-0455-4bd7-b836-8b307ec84c2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.