PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Bipolar membrane electrolyzer for sodium hypochlorite generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objectives of this research work were the construction and evaluation of a laboratory scale electrolytic cell using a bipolar membrane for the production of sodium hypochlorite. The dependence of the cell operation factors on the sodium hypochlorite concentration and specific energy consumption was evaluated, using sodium chloride solutions previously prepared in the laboratory; the experiments were carried out following a factorial design with three levels (3, 4 and 5 V) for the electric potential and sodium chloride concentration (10 and 30 g/L), maintaining a constant electrolysis time of 120 min and recirculation flow of the solutions in both compartments at 350 mL/min. The results showed that the achieved sodium hypochlorite concentration is in the range of (540–1040 mg/L) and power consumption is in the range of (2.1–5.35 kW/kg of NaClO). The sodium hypochlorite concentration and energy consumption were strongly affected by the electric potential applied to the cell, as the voltage increased from 3 to 5 V. In conclusion, this research revealed that this is a promising technology, especially if low concentrations of sodium hypochlorite are used.
Twórcy
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Juan Pablo II 306 Avenue, Bellavista 07011, Perú
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Juan Pablo II 306 Avenue, Bellavista 07011, Perú
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Juan Pablo II 306 Avenue, Bellavista 07011, Perú
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Juan Pablo II 306 Avenue, Bellavista 07011, Perú
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Juan Pablo II 306 Avenue, Bellavista 07011, Perú
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Juan Pablo II 306 Avenue, Bellavista 07011, Perú
  • Facultad de Ingeniería Química, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Calle Juan XXIII 391, Lambayeque 14013, Perú
Bibliografia
  • 1. Afify, A. A., Hassan, G. K., Al-Hazmi, H. E., Kamal, R. M., Mohamed, R. M., Drewnowski, J., Majtacz, J., Mąkinia, J., & El-Gawad, H. A. (2023). Electrochemical production of sodium hypochlorite from salty wastewater using a flow-by porous graphite electrode. Energies, 16(12). https://doi.org/10.3390/en16124754
  • 2. Amikam, G., Nativ, P., & Gendel, Y. (2018). Chlorine-free alkaline seawater electrolysis for hydrogen production. International Journal of Hydrogen Energy, 43(13), 6504–6514. https://doi.org/10.1016/j. ijhydene.2018.02.082
  • 3. Carneiro, M. A., de Kroon, E., Vital, B., Pereira, S. P., & Agostinho, L. L. F. (2024a). Electrochemical process of chlorination and energy generation as viable alternatives for SWRO brine valorization. In Desalination, 586. Elsevier B.V. https://doi.org/10.1016/j.desal.2024.117875
  • 4. Carneiro, M. A., de Kroon, E., Vital, B., Pereira, S. P., & Agostinho, L. L. F. (2024b). Electrochemical process of chlorination and energy generation as viable alternatives for SWRO brine valorization. In Desalination 586. Elsevier B.V. https://doi.org/10.1016/j.desal.2024.117875
  • 5. Cuesta Parra, D. M., Correa Mahecha, F., Rubio Pinzon, A. F., Bustos, D. R., Teran Llorente, L. A., & Jimenez Jimenez, M. F. (2024). A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts. Water Science and Engineering, 17(1), 33–40. https://doi.org/10.1016/j. wse.2023.05.005 fumasep FBM. (n.d.). www.fuelcellstore.com
  • 6. Ge, Z., Shehzad, M. A., Yang, X., Li, G., Wang, H., Yu, W., Liang, X., Ge, X., Wu, L., & Xu, T. (2022). High-performance bipolar membrane for electrochemical water electrolysis. Journal of Membrane Science, 656. https://doi.org/10.1016/j.memsci.2022.120660
  • 7. Han, J. H., Jwa, E., Lee, H., Kim, E. J., Nam, J. Y., Hwang, K. S., Jeong, N., Choi, J., Kim, H., Jeung, Y. C., & Chung, T. D. (2022). Direct seawater electrolysis via synergistic acidification by inorganic precipitation and proton flux from bipolar membrane. Chemical Engineering Journal, 429. https://doi.org/10.1016/j.cej.2021.132383
  • 8. Jeon, Y. S., & Rhim, J. W. (2016). Study on hypochlorite production using newly synthesized bipolar membranes in electrolysis process. Polymer (Korea), 40(1), 142–147. https://doi.org/10.7317/ pk.2016.40.1.142
  • 9. Kim, S. K., Shin, D. M., & Rhim, J. W. (2021a). Designing a high-efficiency hypochlorite ion generation system by combining cation exchange membrane aided electrolysis with chlorine gas recovery stream. Journal of Membrane Science, 630. https://doi.org/10.1016/j.memsci.2021.119318
  • 10. Kim, S. K., Shin, D. M., & Rhim, J. W. (2021b). Designing a high-efficiency hypochlorite ion generation system by combining cation exchange membrane aided electrolysis with chlorine gas recovery stream. Journal of Membrane Science, 630. https://doi.org/10.1016/j.memsci.2021.119318
  • 11. Mei, Y., Yao, Z., Ji, L., Toy, P. H., & Tang, C. Y. (2018). Effects of hypochlorite exposure on the structure and electrochemical performance of ion exchange membranes in reverse electrodialysis. Journal of Membrane Science, 549, 295–305. https://doi.org/10.1016/j.memsci.2017.12.016
  • 12. Pärnamäe, R., Mareev, S., Nikonenko, V., Melnikov, S., Sheldeshov, N., Zabolotskii, V., Hamelers, H. V. M., & Tedesco, M. (2021). Bipolar membranes: A review on principles, latest developments, and applications. In Journal of Membrane Science, 617. Elsevier B.V. https://doi.org/10.1016/j.memsci.2020.118538
  • 14. Sánchez-Aldana, D., Ortega-Corral, N., Rocha-Gutiérrez, B. A., Ballinas-Casarrubias, L., Pérez-Domínguez, E. J., Nevárez-Moorillon, G. V., Soto-Salcido, L. A., Ortega-Hernández, S., Cardenas-Félix, G., & González-Sánchez, G. (2018). Hypochlorite generation from a water softener spent brine. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121733
  • 15. Shen, F., Shi, X., & Shi, J. (2023). Novel bipolar membrane electrolyzer for CO2 reduction to CO in organic electrolyte with Cl2 and NaOH produced as byproducts. Journal of CO2 Utilization, 77. https://doi.org/10.1016/j.jcou.2023.102595
  • 16. Shen, F., Wu, S., Zhao, P., Li, Y., Miao, S., Liu, J., Ostheimer, D., Hannappel, T., Chen, T., & Shi, J. (2024). Bipolar membrane Electrolyzer for CO2 electro-reduction to CO in organic electrolyte with NaClO produced as byproduct. Electrochimica Acta, 483. https://doi.org/10.1016/j.electacta.2024.144056
  • 17. Tzedakis, T., & Assouan, Y. (2014). One-flow feed divided electrochemical reactor for indirect electrolytic production of hypochlorite from brine for swimming pool treatment-experimental and theoretical optimization. Chemical Engineering Journal, 253, 427–437. https://doi.org/10.1016/j.cej.2014.05.001
  • 18. Wu, S., Shen, F., Zhao, P., Li, Y., Shi, J., Chen, T., & Ma, W. (2023). Designing a bipolar membrane electrolyzer for NaCl electrolysis to produce high-quality NaClO. Journal of Physical Chemistry C, 127(31), 15177–15184. https://doi.org/10.1021/acs.jpcc.3c03023
  • 19. Ye, W., Huang, J., Lin, J., Zhang, X., Shen, J., Luis, P., & Van Der Bruggen, B. (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: Conditioning NaOH as a CO2 absorbent. Separation and Purification Technology, 144, 206–214. https://doi.org/10.1016/j.seppur.2015.02.031
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d98ca6da-fe8b-44a3-a7fa-346e533f7049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.