PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporal changes in diversity of vascular flora accompanying Salix viminalis L. plantations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, there has been increasing interest in the floristic diversity of agroecosystems, particularly for plant conservation. While old plantations claim to be more floristically diverse, little is known about this for Salix viminalis L. plantations. The aim of study was to analyse the vegetation accompanying S. viminalis and its dynamics as plantations age. The vegetation was identified in 20 plantations, based on 244 phytosociological relevés. For each species, the following were defined: botanical family, geographical and historical groups, origin of apophytes, biological stability, life-form, botanical class and phytosociological class. The relative coverage of major plant groups was statistically processed using the analysis of variance with a linear mixed model. The flora of S. viminalis plantations is rich and diverse; in central Poland, it consisted of 193 plant species. These species belonged to many phytosociological classes, of which two dominated: Molinio-Arrhenatheretea (46 species) and Artemisietea vulgaris (32 species). Perennial species, meadow, woodland, and shrub apophytes, as well as hemicryptophytes, were prevalent. As the plantations aged, the proportion of perennial species, meadow, woodland, and shrub apophytes increased, while therophytes and anthropophytes declined. Photophilous species dominated mainly in young crops (4-5 years old), but their coverage and frequency decreased over time. With plantations age, vascular flora diversity (total number of species) and coverage of ecologically important groups (Poaceae family, Molinio-Arrhenatheretea class) decreased. These were gradually replaced by mega- and nanophanerophytes and species from the A. vulgaris class. The stabilisation of flora occurred after eight years of willow cultivation.
Wydawca
Rocznik
Tom
Strony
100--111
Opis fizyczny
Bibliogr. 46 poz., mapa, rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Faculty of Agriculture and Ecology, Institute of Agriculture, Agronomy Department, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Agriculture and Ecology, Institute of Agriculture, Agronomy Department, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Agriculture and Ecology, Institute of Agriculture, Biometry Department, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • Anioł-Kwiatkowska, J. (1974) Flora i zbiorowiska synantropijne Legnicy, Lubina i Polkowic [Flora and synanthropic communities of Legnica, Lubin and Polkowice]. Acta Universitatis Wratislaviensis. Prace Botaniczne, 229. Wrocław: Uniwersytet Wrocławski.
  • Anioł-Kwiatkowska, J., Kącki, Z. and Śliwiński, M. (2009) “Porównanie kompozycji gatunkowej trzech upraw wierzby energetycznej [A comparison of species composition of three energy willow crops],” Pamiętnik Puławski, 150, pp. 19–33.
  • Bates, D. et al. (2015) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. Available at: http://CRAN.R-project.org/package¼lme4 (Accessed: April 15, 2019).
  • Baum, S., Weih, M. and Bolte, A. (2012) “Stand age characteristics and soil properties affect species composition of vascular plants in short rotation coppice plantations,” BioRisk, 7, pp. 51–71. Available at: https://doi.org/10.3897/biorisk.7.2699.
  • Bioenergy Europe (2019) Statistical Report 2019. Biomass supply. Available at: https://platformduurzamebiobrandstoffen.nl/wpcontent/uploads/2020/04/2019_Bioenergy-Europe_Biomass-Supply-2019_Statistical-Report.pdf (Accessed: December 20, 2020).
  • Böhm, C., Kanzler, M. and Freese, D. (2014) “Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany,” Agroforestry Systems, 88, pp. 579–591. Available at: https://doi.org/10.1007/s10457-014-9700-y.
  • Braun-Blanquet, J. (1964) Pflanzensoziologie-Grundzüge der Vegetationskunde [Plant sociology – basic principles of vegetation science]. 3 Auflage. Wien, New York: Springer Verlang.
  • Cunningham, M.D. et al. (2006) The effects on flora and fauna of converting grassland to Short Rotation Coppice. Department of Trade and Industry. Available at: https://webarchive.nationalarchives.gov.uk/ukgwa/+/http:/www.berr.gov.uk/files/file30621.pdf (Accessed: May 20, 2024).
  • Fehér, A., Halmová, D. and Končeková, L. (2013) “Gradient analysis of importance of spontaneously occurring vascular plant species in energy tree and grass stands,” Acta Regionalia et Environmentalica, 10(2), pp. 31–33. Available at: https://doi.org/10.2478/aree-2013-0006.
  • Fehér, A. et al. (2020) “Vascular plants diversity in short rotation coppices: a reliable source of ecosystem services or farmland dead loss?,” iForest, 13, pp. 345–350. Available at: https://doi.org/10.3832/ifor3055-013.
  • Feledyn-Szewczyk, B. (2013) Wpływ sposobu użytkowania gruntów na różnorodność gatunkową flory segetalnej [The influence of agricultural land use on weed flora diversity]. Rozprawa habilitacyjna. Monografie i Rozprawy Naukowe, 36. Puławy: IUNG-PIB.
  • Feledyn-Szewczyk, B., Matyka, M. and Staniak, M. (2019) “Comparison of the effect of perennial energy crops and agricultural crops on weed flora diversity,” Agronomy, 9(11), 695. Available at: https://doi.org/10.3390/agronomy9110695.
  • Geoportal województwa łódzkiego [Geoportal of Łódź Voivodeship] (2019) Available at: https://geoportal.lodzkie.pl/imap/ (Accessed: April 15, 2019).
  • Grimau, L. et al. (2014) “The importance of weeds as melliferous flora in central Chile,” Environmental and Ecology, 41(3), pp. 387–394. Available at: http://dx.doi.org/10.4067/S0718-16202014000 300011.
  • IUSS Working Group WRB (2015) World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports, 106. Rome, Italy: FAO. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/bcdecec7-f45f-4dc5-beb1-97022d29fab4/content (Accessed: December 20, 2020).
  • Janicka, M., Kutkowska, A. and Paderewski, J. (2019) “Diversity of vascular flora in Salix viminalis L. crops depending on the harvest cycle,” Rocznik Ochrona Środowiska / Annual Set Environment Protection, 21, pp. 1175–1201.
  • Janicka, M., Kutkowska, A. and Paderewski, J. (2020) “Diversity of vascular flora accompanying Salix viminalis L. crops depending on soil condition,” Global Ecology and Conservation, 23, e01068. Available at: https://doi.org/10.1016/j.gecco.2020.e01068.
  • Kabała, C. et al. (2019) Systematyka gleb Polski [Polish soil classifica-tion]. 6th ed. Wrocław–Warszawa: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Instytut Nauk o Glebie i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Komisja Genezy, Klasyfikacji i Kartografii Gleb. Available at: http://www.ejpau.media.pl/PDFy/systematyka-gleb-polski-wyd%206.pdf (Accessed: December 20, 2020).
  • Kaźmierczakowa, R. et al. (2016) Polska czerwona lista paprotników i roślin kwiatowych [Polish red list of pteridophytes and flowering plants]. R. Kaźmierczakowa (ed.). Kraków: Instytut Ochrony Przyrody Polskiej Akademii Nauk.
  • Kędziora, A. and Karg, J. (2010) “Zagrożenia i ochrona różnorodności biologicznej [Risks to biological diversity],” Nauka, 4, pp. 107–114.
  • Korniak, T. (1992) “Flora segetalna północno-wschodniej Polski, jej przestrzenne zróżnicowanie i współczesne przemiany [Segetal flora of north-eastern Poland, its spatial differentiation and current changes],” Acta Academiae Agriculturae ac Technicae Olstenensis, Agricultura, 53 (Suppl. A), pp. 1–76.
  • Korniak, T., Hołdyński, Cz. and Wąsowicz, K. (2009) “Przemiany flory chwastów upraw wierzby w północno-wschodniej Polsce [Changes in the weed flora of willow plantations in north-eastern Poland],” Pamiętnik Puławski, 150, pp. 159–170.
  • Kuznetsova, A., Brockhoff, P.B. and Christensen, R.H.B. (2017) “ImerTest package: Tests in linear mixed effects models,” Journal of Statistical Software, 82(13), pp. 1–26. Available at: https://doi.org/10.18637/jss.v082.i13.
  • Kwiatkowski, C.A., Haliniarz, M. and Harasim, E. (2020) “Weed infestation and health of organically grown Chamomile (Chamomilla recutita (L.) Rausch.) depending on selected foliar sprays and row spacing,” Agriculture, 10(5), 168. Available at: https://doi.org/10.3390/agriculture10050168.
  • Marshall, E.J.P. et al. (2003) “The role of weeds in supporting biological diversity within crop fields,” Weed Research, 43, pp. 77–89.
  • Matuszkiewicz, W. (2024) Przewodnik do oznaczania zbiorowisk roślinnych Polski [Guide to the Determination of Polish Plant Communities]. Warszawa: Wydawnictwo Naukowe PWN.
  • Matyka, M. (2013) Produkcyjne i ekonomiczne aspekty uprawy roślin wieloletnich na cele energetyczne [Production and economic aspects of cultivation of perennial plants for energy purposes]. Rozprawa habilitacyjna. Monografie i Rozprawy Naukowe, 35. Puławy: IUNG-PIB.
  • Mirek, Z. et al. (2020) Flowering plants and pteridophytes of Poland. A checklist in Z. Mirek (ed.) Biodiversity of Poland. Vol. 1. Kraków: Institute of Botany, Polish Academy of Sciences.
  • Pawłowski, B. (1972) “Skład i budowa zbiorowisk roślinnych oraz metody ich badania [Composition and structure of plant communities and methods of their research],” in W. Szafer and K. Zarzycki (eds.) Szata roślinna Polski (Polish Vegetation). 2nd edn. Warszawa: PWN, pp. 237–269.
  • R Core Team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (Computer program). Available at: https://www.R-project.org/ (Accessed: January 20, 2021).
  • Rowe, R.L. et al. (2011) “Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment,” Biomass and Bioenergy, 35, pp. 325–336. Available at: https://doi.org/10.1016/j.biombioe.2010.08.046.
  • Rutkowski, L. (2008) Klucz do oznaczania roślin naczyniowych Polski niżowej [Key for the determination of lowland Poland vascular plants]. 2nd edn. Warszawa: PWN.
  • Safader, P. (2014) “Awifauna plantacji roślin przeznaczonych na cele energetyczne. [Avifauna of plant plantations intended for energy purposes],” in Z. Jarosz (ed.) Wykorzystanie odnawialnych źródeł energii pochodzenia rolniczego i ich wpływ na środowisko [The use of renewable energy sources of agricultural origin and their impact on the environment]. Studia i Raporty IUNG-PIB, 39(13). Puławy: IUNG, pp. 101–115.
  • Siciński, J.T. (2003) Agrofitocenozy dorzecza środkowej Warty i Bzury – stan, dynamika i zagrożenia [Agrophytocoesoses of the middle Warta and Bzura River basins – status, dynamics, and threats]. Rozprawy habilitacyjne Uniwersytetu Łódzkiego. Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
  • Siciński, J.T. (2009) “Zachwaszczenie plantacji wierzby wiciowej (Salix viminalis L.) w rejonie Łodzi [Infestation of common osier (Salix viminalis L.) plantations with weeds in the Łódź region],” Pamiętnik Puławski, 150, pp. 247–254.
  • Skrajna, T. et al. (2009) “Skład i struktura zbiorowisk zachwaszczających Salix sp. w północnej części Niziny Południowopodlaskiej [Composition and structure of communities infestin of Salix sp. in northern part of Południowopodlaska Lowland],” Pamiętnik Puławski, 150, pp. 255–264.
  • Stolarski, J. et al. (2014) “Short rotation woody crops grown on marginal soil for biomass energy,” Polish Journal Environmental Studies, 23(5), pp. 1727–1739.
  • Stolarski, M.J. et al. (2019) “Willow production during 12 consecutive years – The effects of harvest rotation, planting density and cultivar on biomass yield,” Global Change Bioenergy, 11, pp. 635–656. Available at: https://doi.org/10.1111/gcbb.12583.
  • Szafer, W., Kulczyński, S. and Pawłowski, B. (1986) Szata roślinna Polski [Polish Vegetation]. 5th edn. Warszawa: PWN.
  • Trąba, Cz., Majda, J. and Wolański, P. (2009) “Zbiorowiska roślinne towarzyszące plantacjom Salix viminalis L. w województwie podkarpackim [Plant communities accompanying plantations of Salix viminalis L. in podkarpackie voivodeship],” Pamiętnik Puławski, 150, pp. 323–336.
  • Vanbeveren, S.P.P. and Ceulemans, R. (2019) “Biodiversity in short-rotation coppice,” Renewable and Sustainable Energy Reviews, 111, pp. 34–43. Available at: https://doi.org/10.1016/j.rser.2019.05.012.
  • Welc, M. et al. (2017) “Weed community trajectories in cereal and willow cultivations after termination of a willow short rotation coppice,” Agronomy Research, 15(4), pp. 1795–1814. Available at: http://dx.doi.org/10.15159/ar.17.040.
  • Winberg, J., Smith, H.G. and Ekroos, J. (2023) “Bioenergy crops, biodiversity and ecosystem services in temperate agricultural landscapes – A review of synergies and trade-offs,” Global Change Bioenergy, 15, pp. 1204–1220. Available at: https://doi.org/10.1111/gcbb.13092.
  • Wróbel, M., Wróbel, J. and Gregorczyk, A. (2011) “Floristic and community diversity of weed vegetation in willow short-rotation coppices in different soil-habitat conditions,” Polish Journal of Ecology, 59(2), pp. 289–296.
  • Zając, M. and Zając, A. (1992). “A tentative list of segetal and ruderal apophytes in Poland,” Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Botaniczne, MLIX, 24, pp. 7–23.
  • Ziaja, M. and Wnuk, Z. (2009) “Zachwaszczenie upraw energetycznych w Leszczawie Dolnej (woj. podkarpackie) [Weed infestation of energetic crop in Leszczawa Dolna (podkarpackie voivodeship)],” Pamiętnik Puławski, 150, pp. 367–375.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d98bfb69-0921-4b70-9bbf-bd0ff341530c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.