Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the experiment described in the paper was to determine the effect of selected conditions of abrasive machining on the size and distribution of microhardness and residual stresses developed in the technological surface layer of flat specimens made of 20MnCr5 steel. The specimens were subjected to single-piece flow low-pressure carburizing (LPC) and high-pressure gas quenching (HPGQ) in a 4D Quenching chamber, in order to achieve the effective case depth of ECD=0.4 mm. This was followed by grinding the specimens with Quantum and Vortex alumina grinding wheels made by Norton. Cooling and lubricating liquid were supplied to the grinding zone in both cases by the flood (WET) method and by the minimum quantity lubrication (MQL) method. The measurements for each specimen were made twice - after the thermo-chemical treatment and after the grinding. Microhardness and residual stress was measured by the X-ray method sin2Ψ. The final part of the article provides an analysis of the measurement results and presents conclusions and recommendations for further studies.
Czasopismo
Rocznik
Tom
Strony
73--85
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Institute of Machine Tools and Production Engineering, Lodz University of Technology, Lodz, Poland
autor
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
autor
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
autor
- Institute of Machine Tools and Production Engineering, Lodz University of Technology, Lodz, Poland
autor
- The Jacob of Paradies University, Gorzow Wielkopolski, Poland
Bibliografia
- [1] KRUSZYŃSKI B.W., WÓJCIK R., 2001, Residual stress in grinding, Journal of Materials Processing Technology, 109, 254-257.
- [2] KORECKI M., WOŁOWIEC-KORECKA E., SUT M., BREWKA A., STACHURSKI W., ZGÓRNIAK P., 2017, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM Journal of Heat Treatment and Materials, 72/3, 175-183.
- [3] GRÄFEN W., EDENHOFER B., 2005, New developments in thermo-chemical diffusion processes, Surface & Coatings Technology, 200/5-6, 1830-1836.
- [4] KULA P., DYBOWSKI K., WOLOWIEC E., PIETRASIK R., 2014, Boost-diffusion vacuum carburising – Process optimisation, Vacuum, 99, 175-179.
- [5] ATRASZKIEWICZ R., JANUSZEWICZ B., KACZMAREK Ł., STACHURSKI W., DYBOWSKI K., RZEPKOWSKI A., 2012, High pressure gas quenching: Distortion analysis in gears after heat treatment, Materials Science & Engineering: A, 558, 550-557.
- [6] DYBOWSKI K., SAWICKI J., KULA P., JANUSZEWICZ B., ATRASZKIEWICZ R., LIPA S., 2016, The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing, Archives of Metallurgy and Materials, 61/2B, 1057-1062.
- [7] GAWROŃSKI Z., MALASIŃSKI A., SAWICKI J., 2010, A selection of the protective atmosphere eliminating the inter-operational copper plating step in the processing of gear wheels, Archives of Materials Science and Engineering, 44/1, 51-57.
- [8] GAWROŃSKI Z., MALASIŃSKI A., SAWICKI J., 2010, Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels, International Journal of Automotive Technology, 11/1, 127-131.
- [9] SAWICKI J., KRUSZYŃSKI B., WÓJCIK R., 2017, The influence of grinding conditions on the distribution of residual stress in the surface layer of 17CrNi6-6 steel after carburizing, Advances in Science and Technology,Research Journal, 11/2, 17-22.
- [10] KRUSZYŃSKI B.W., GAWROŃSKI Z., SAWICKI J., ZGÓRNIAK P., 2008, Enhancement of gears fatigue properties by modern termo-chemical treatment and grinding processes, Mechanics and Mechanical Engineering, 12/4, 387-395.
- [11] LIPA S., SAWICKI J., DYBOWSKI K., PIETRASIK R., JANUSZEWICZ B., 2018, The effect of non-metallic inclusions formed as a result of deoxidation on the fatigue strength of 15CrNi6 and 16MnCr5 steel, Archives of Metallurgy and Materials, 63/3, 1345-1350.
- [12] SAWICKI J., GÓRECKI M., KACZMAREK Ł., GAWROŃSKI Z., DYBOWSKI K., PIETRASIK R., PAWLAK W., 2013, Increasing the durability of pressure dies by modern surface treatment methods, Chiang Mai Journal of Science, 40/5, 886-897.
- [13] WEBSTER G.A., 2000, Role of residual stress in engineering applications, Materials Science Forum, 347-349, 1-11.
- [14] GAWROŃSKI Z., SAWICKI J., 2006, Technological surface layer selection for small module pitches of gear wheels working under cyclic contact loads, Materials Science Forum, 513, 69-74.
- [15] LIPA S., SAWICKI J., WOŁOWIEC E., DYBOWSKI K., KULA P., 2016, Method of determining the strain hardening of carburized elements in Ansys environment, Solid State Phenomena, 240, 74-80.
- [16] GAWROŃSKI Z., SAWICKI J., 2000, Toothed wheel optimization by means of the finite element analysis, Mechanics and Mechanical Engineering – International Journal, 4/2, 183-189.
- [17] SAWICKI J., SIEDLACZEK P., STASZCZYK A., 2018, Finite-element analysis of residual stresses generated under nitriding process: a three-dimensional model, Metal Science and Heat Treatment, 59/11-12, 799-804.
- [18] SAWICKI J., SIEDLACZEK P., STASZCZYK A., 2018, Fatigue life predicting for nitrided steel – finite element analysis, Archives of Metallurgy and Materials, 63/2, 917-923.
- [19] STACHURSKI W., SAWICKI J., WÓJCIK R., NADOLNY K., 2018, Influence of application of hybrid MQL-CCA method of applying coolant during hob cutter sharpening on cutting blade surface condition, Journal of Cleaner Production, 171, 892-910.
- [20] SILVA L.R., BIANCHI E.C., CATAI R.E., FUSSE R.Y., FRANÇA T.V., AGUIAR P.R., 2005, Study on the behaviour of the minimum quantity lubricant – MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27/2, 192-199.
- [21] SILVA L.R., BIANCHI E.C., FUSSE R.Y., CATAI R.E., FRANÇA T.V., AGUIAR P.R., 2007, Analysis of surface integrity for minimum quantity lubricant-MQL grinding, International Journal of Machine Tools and Manufacture, 47, 412-418.
- [22] SHAO Y., FERGANI O., LI B., LIANG S.Y., 2016, Residual stress modelling in minimum quantity lubrication grinding, International Journal of Advanced Manufacturing Technology, 83, 743-751.
- [23] KORECKI M., WOŁOWIEC-KORECKA E., GLENN D., 2015, Single-Piece, High-Volume, Low-Distortion Case Hardening of Gears, AGMA Technical Paper, 15FTM04.
- [24] WOŁOWIEC-KORECKA E., KORECKI M., STACHURSKI W., ZGÓRNIAK P., SAWICKI J., BREWKA A., SUT M., BAZEL M., 2016, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering, 79/1, 37-44.
- [25] STACHURSKI W., ZGÓRNIAK P., SAWICKI J., PRZYBYSZ M., 2017, Hardening-related deformations of gear wheels after vacuum carburising and quenching in a 4D quenching chamber, Advances in Science and Technology-Research Journal, 11/1, 237-245.
- [26] ECOLUBRIC® MQL System: www.accu-svenska.se/mql-system/ecolubric-®
- [27] ECOLUBRIC E200L, Safety Data Sheet: www.accu-svenska.se/safety-datasheets
- [28] SILVA L.R., BIANCHI E.C., FUSSE R.Y., CATAI R.E., FRANÇA T.V., AGUIAR P.R., 2007, Analysis of surface integrity for minimum quantity lubricant – MQL in grinding, International Journal of Machine Tools and Manufacture, 47, 412-418.
- [29] BIANCHI E.C., AGUIAR P.R., DINIZ A.E., CANARIM R.C., 2011, Optimization of ceramics grinding, Advances in Ceramics-Synthesis and Characterization, Processing and Specific Application (ed. Sikalidis C.), IntechOpen, DOI: 10.5772/985.
- [30] ZHANG S., LI C., JIA D., ZHANG D., ZHANG X., 2015, Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding, International Journal of Advanced Manufacturing Technology, 78, 1275-1288.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d98af400-d829-48d2-91e7-6e6410005659