PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some applications of barium titanate prepared by different methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The paper presents some application of barium titanate synthesized by different methods. Barium titanate samples were prepared by four procedures: solid state, mechanochemical as direct synthesis and modification as well as hydrothermal and microwave. The obtained samples were systematically studied using X-ray diffraction, nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR), potentiometric titration, and quasi-elastic light scattering and zeta potential measurements. The values of pHpzc (point of zero charge) and pHIEP (isoelectric point) characteristic of the electrical double layer were determined. The prepared samples were tested as photocatalysts under visible light. As a result, relationship between the conditions of barium titanate synthesis, its physicochemical and electrokinetic parameters, as well as photocatalytic activity under visible light was first established.
Rocznik
Strony
art. no. 147192
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • National Academy of Sciences in Ukraine
  • National Academy of Sciences in Ukraine
autor
  • Maria Curie-Sklodowska University in Lublin
  • Maria Curie-Sklodowska University in Lublin
Bibliografia
  • ASHIRI, R., 2016. On the solid-state formation of BaTiO3 nanocrystals from mechanically activated BaCO3 and TiO2 powders: innovative mechanochemical processing, the mechanism involved, and phase and nanostructure evolutions. RSC Advances, 6, 17138–17150.
  • AL-HOBAIB, A.S., AL-SUHYBANI, A.A., 2014. Removal of uranyl ions from aqueous solutions using barium titanate. J Radioanal Nucl Chem 299, 559–567.
  • BAGHERI, H., FAKHRI, H., GHAHREMANI, R., KARIMI, M., MADRAKIAN, T., AFKHAMI, A. 2020. Nanomaterial-based adsorbents for wastewater treatment. Smart Nanocontainers, 467–485.
  • BALAZ, P., PLESINGEROVA, B., 2000. Thermal properties of mechanochemically pretreated precursors of BaTiO3 synthesis. J Therm Anal Calorim. 59, 1017–21.
  • BANTAWAL, H., BHAT, D.K., 2018. Hierarchical Porous BaTio3 Nano-Hexagons as A Visible Light Photocatalyst. International Journal of Engineering & Technology 7, 105-109.
  • BLANCO-LOPEZ, M.C., RAND, B., RILEY, F.L., 2000. The isoelectric point of BaTiO3. J. Eur. Ceram. Soc. 20. 107-118.
  • CHEN, F., ZHAO, J., HIDAKA, H., 2003. Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. International Journal of Photoenergy 5(4), 209–217.
  • CHEN, Y.-H., CHEN, Y.-D., 2011. Kinetic study of Cu(II) adsorption on nanosized BaTiO3 and SrTiO3 photocatalysts. Journal of Hazardous Materials, 185, 168–173.
  • CHUN, H., YIZHONG, W., HONGXIAO, T. 2001. Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/SiO2 photocatalyst. Applied Catalysis B: Environmental 35(2), 95–105.
  • CUI, Y., BRISCOE, J., DUNN, S., 2013. Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3—Influence on the Carrier Separation and Stern Layer Formation. Chemistry of Materials 25(21), 4215–4223.
  • DEMYDOV, D., LABAUNDE, K.J., 2004. Characterization of mixed metal oxides SrTiO3 and BaTiO3 synthesized by a modified aerogel procedure. J. Non-Cryst. Solids. 350, 165-172.
  • DIEBOLD, U., 2003. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229.
  • GESENHUES, U., 2007. The effects of plastic deformation on band gap, electronic defect states and lattice vibrations of rutile. J. Phys. Chem. Solids 68, 224-235.
  • GORELOV, B.M., KOTENOK, E.V., MAKHNO, S.N. , SYDORCHUK, V.V., KHALAMEIDA, S.V., ZAZHIGALOV, V.A., 2011. Structure and optical and dielectric properties of barium titanate nanoparticles obtained by the mechanochemical method. Techn. Phys. 56, 83–91.
  • GÓRSKA, P., ZALESKA, A., KOWALSKA, E., KLIMCZUK, T., SOBCZAK, J. W., SKWAREK, E., HUPKA, J., 2008. TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties. Applied Catalysis B: Environmental 84(3-4), 440–447.
  • GUEVAR, C., HERTZ, A., BRACKX, E., BARRE, Y., GRANDJEAN, A., 2017. Mechanisms of strontium removal by a Ba-titanate material for the wastewater treatment. Journal of Environmental Chemical Engineering 5, 4948-4957.
  • GUIN, R., DAS, S. K., SAHA, S. K., 2002. Adsorption studies of zinc ions on barium titanate from aqueous solution. Radiochimica Acta 90(1), 53-56.
  • HSU, R.C., YING, K.L., CHEN, L.P., 2005. Dispersion properties of BaTiO3 colloids with amphoteric polyelectrolites. J. Amer. Ceram. Soc. 88, 524-529.
  • INDRIS, S., AMADE, R., HEITJANS, P., 2005. Preparation by high- energy milling, characterization, and catalytic properties of nanocrystalline TiO2. J. Phys. Chem. B. 109, 23274-23278.
  • JANUSZ, W., KHALAMEIDA, S., SYDORCHUK, V. , SKWAREK, E., ZAZHIGALOV, V., SKUBISZEWSKA-ZIĘBA, J., LEBODA, R., 2010. Some properties of milled vanadium phosphates. Adsorption. 16, 333–341.
  • JIAO, H., ZHAO, K., MA, L., TANG, Y., 2016. A simple one-step hydrothermal synthesis and photocatalysis of bowl-like BaTiO3 nanoparticles. Inorganic and Nano-Metal Chemistry 47(5), 647–654.
  • KAPPADAN, S., GEBREAB, T. W., THOMAS, S., KALARIKKAL, N., 2016. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Materials Science in Semiconductor Processing 51, 42–47.
  • KARTHIK, K. V., REDDY, C. V., REDDY, K. R., RAVISHANKAR, R., SANJEEV, G., KULKARNI, R. V., RAGHU, A. V., 2019. Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. Journal of Materials Science: Materials in Electronics 30(23), 20646-20653.
  • KAYA, I.C., KALEM, V., AKYILDIZ, H., 2019. Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: Study on photocatalytic and dielectric properties, Int J Appl Ceram Technol. 16, 1557–1569.
  • KHALAMEIDA, S. V., SIDORCHUK, V. V., ZAZHIGALOV, V. A., MIRONYUK, T. I., 2010. Specific features of the photocatalytic destruction of Safranin T on mechanochemically produced barium titanate. Russian Journal of Applied Chemistry 83(10), 1799–1803.
  • KHALAMEIDA, S., SYDORCHUK, V., SKUBISZEWSKA-ZIĘBA, J., LEBODA, R., ZAZHIGALOV, V., 2010. Synthesis, thermoanalytical, and spectroscopical studies of dispersed barium titanate. Journal of Thermal Analysis and Calorimetry 101(2), 779–784.
  • KHALAMEIDA, S., SYDORCHUK, V., ZAZHIGALOV, V., WIECZOREK-CIUROWA, K., SKUBISZEWSKA-ZIĘBA, J., CHARMAS, B., 2017. The Interaction between Barium and Titanium Oxides under Mechanochemical, Hydrothermal and Microwave Treatments and Properties of Prepared Products. Advanced Science, Engineering and Medicine 9, 235-246.
  • KIKUTA, K., SHIMIZU, Y., MORIYA, M., YAMAGUCHI, T., HIRANO, S., SAITO, Y., SAKABE, Y., 2006. Low Temperature Recycling Process for Barium Titanate Based Waste. Journal of the Ceramic Society of Japan 114(1329), 392–394.
  • KOLODIAZHNYI, T., PETRIC, A., 2003. Analysis of point defects in polycrystalline BaTiO3 by electron paramagnetic resonance. Journal of Physics and Chemistry of Solids 64(6), 953–960.
  • KOSMULSKI, M., 2004. pH-dependent surface charging and points of zero charge II. Update. Journal of Colloid and Interface Science 275(1), 214–224.
  • LANDRI, S.Jr., SEGUNDO, I.R., FREITAS, E., VASILESKIY, M., CARNEIRO, J., TAVARES, C.J., 2022. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Communications 3341, 114573.
  • LEE, W. W., CHUNG, W.H., HUANG, W.S., LIN, W.C., LIN, W.Y., JIANG, Y.R., CHEN, C.C., 2013. Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method. Journal of the Taiwan Institute of Chemical Engineers 44(4), 660–669.
  • LEWIS, J.A., 2000. Colloidal processing of ceramics. J. Amer. Ceram. Soc. 83(10), 2341-2359.
  • LUO, B., PATTERSON, J.W., ANDERSON, P.R., 1992. Kinetics of cadmium hydroxide precipitation, Water Research 26(6), 745-751.
  • MALGHE, Y.S., GURJAR, A.V., DHARWADKAR, S.R., 2004. Synthesis of BaTiO3 powder from barium titanyl oxalate (BTO) precursor employing microwave heating technique. Bull. Mater. Sci. 27, 217.
  • MISHRA, S.P., SINGH, V.K., TIWARI, D., 1996. Radiotracer technique in adsorption study. Pt. 15. Removal behaviour of barium titanate for mercury ions. Radiochimica Acta 73(1), 49-53.
  • NI, Y., ZHENG, H., XIANG, N., YUAN, K., HONG, J., 2015. Simple hydrothermal synthesis and photocatalytic performance of coral-like BaTiO3 nanostructures. RSC Advances 5(10), 7245–7252.
  • PHAN, T.L., ZHANG, P., YANG, D. S., THANH, T. D., TUAN, D. A., YU, S.C., 2013. Origin of ferromagnetism in BaTiO3 nanoparticles prepared by mechanical milling. Journal of Applied Physics 113(17), 17E305.
  • PIRGHOLI-GIVI, G., AZIZIAN-KALANDARAGH, Y., FARAZIN, J., 2021. Comparison of the photocatalytic activity of perovskite structures: Bismuth, barium, and zinc titanate nanostructures for photodegradation of methylene blue from water. Journal of Photochemistry and Photobiology A: Chemistry 408, 113104.
  • RAE, A., CHU, M., GANINE, V., 2007. Barium titanate: past, present and future. Ceram Trans. 100, 1–12.
  • RAUF, M.A.. ASHRAF, S.S., 2009. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J. 151. 10–18.
  • SAITO, T., SHIRAIWA, N., MORIOKA, Y., AKAGI, K., NAKAYAMA, K. S., ADSCHIRI, T., ASAO, N., 2019. Granular Barium Titanate Nanowire-Based Adsorbents for the Removal of Strontium Ions from Contaminated Water. ACS Applied Nano Materials 2(11), 6793-6797.
  • SARAVAIA, H., GUPTA, H., KULSHRESHTHA, V., 2016. Synthesis of Nano-Barium Titanate and Application for Strontium Adsorption from Aqueous Solution. Advanced Materials Research 1141, 190–195.
  • SHEN, Z.G., CHEN, J.F., ZOU, H.K., YUN, J., 2004. Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrilate. J. Colloid Interface Sci. 275, 158-164.
  • SYDORCHUK, V. V., ZAZHIGALOV, V. A., KHALAMEIDA, S. V., WIECZOREK-CIUROWA, K., SKUBISZEWSKA-ZIĘBA, J., LEBODA, R., 2009. Investigation of physicochemical transformation at mechanochemical, hydrothermal and microwave treatment of barium titanyloxalate. Journal of Alloys and Compounds 482(1-2), 229–234.
  • THOMPSON, Tracy L., YATES, JOHN T., 2006. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chemical reviews 106, 4428-4453.
  • TRIPATHY, S.S., RAICHUR, A.M., 2011. Dissolution properties of BaTiO3 nanoparticles in aqueous suspensions, Journal of Experimental Nanoscience 6(2), 127-137.
  • VAMVAKAKI, M., BILLINGHAM, N. C., ARMES, S. P., WATTS, J. F., GREAVES, S. J., 2001. Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media. Journal of Materials Chemistry 11(10), 2437-2444.
  • WANG, J., YIN, S., KOMATSU, M, M., ZHANG, Q., SAITO, F., SATO, T., 2004. Photo-oxidation properties of nitrogen doped SrTiO3 made by mechanical activation. Appl. Catal. B 52(1), 11-21.
  • WELHAM, N. J., 1998. Mechanically induced reaction between alkaline earth metal oxides and TiO2. Journal of Materials Research 13(06), 1607–1613.
  • WILHELM, P., STEPHAN, D., 2007. Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. Journal of Photochemistry and Photobiology A: Chemistry 185(1), 19–25.
  • XIONG, X., TIAN, R., LIN, X., CHU, D., LI, S., 2015. Formation and Photocatalytic Activity of BaTiO3 Nanocubes via Hydrothermal Process. Journal of Nanomaterials, 2015, 1–6.
  • ZAZHIGALOV, V.A., SIDORCHUK, V.V., KHALAMEIDA, S.V., KUZNETSOVA, L.S., 2008. Mechanochemical synthesis of BaTiO3 from barium titanyl oxalate. Inorg Mater 44, 641-645.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d98a696e-6628-4e92-b934-b9677368b06f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.