PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Property (B) and oscillation of third-order differential equations with mixed arguments

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we present sufficient conditions for property (B) and the oscillation of the third-order nonlinear functional differential equation with mixed arguments [α(t)[x(t)] γ]’=q(t)f(x[τ(t)])+p(t)h(x[σ(t)]), where ∫α-1/γ(s)ds=∞. We deduce properties of the studied equations by establishing new comparison theorems so that property (B) and the oscillation are resulted from the oscillation of suitable first order equations.
Wydawca
Rocznik
Strony
55--68
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
autor
  • Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
Bibliografia
  • [1] R. P. Agarwal, M. F. Aktas and A. Tiryaki, On oscillation criteria for third order nonlinear delay differential equations, Arch. Math. Brno 45 (2009), 1-18.
  • [2] R. P. Agarwal, S. R. Grace and D. O’Regan, On the oscillation of certain functional differential equations via comparison methods, J. Math. Anal. Appl. 286 (2003), 577-600.
  • [3] R. P. Agarwal, S. R. Grace and T. Smith, Oscillation of certain third order functional differential equations, Adv. Math. Sci. Appl. 16 (2006), 69-94.
  • [4] R. P. Agarwal, S. L. Shieh and C. C. Yeh, Oscillation criteria for second-order retarded differential equations, Math. Comput. Modelling 26 (1997), 1-11.
  • [5] B. Baculíková, R. P. Agarwal, T. Li and J. Džurina, Oscillation of third-order nonlinear functional differential equations with mixed arguments, Acta Math. Hungar. 134 (2012), 54-67.
  • [6] B. Baculíková and J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Modelling 52 (2010), 215-226.
  • [7] M. Cecchi, Z. Došlá and M. Marini, On third order differential equations with property A and B, J. Math. Anal. Appl. 231 (1999), 509-525.
  • [8] J. Džurina, Comparison theorems for functional differential equations with advanced argument, Bolletino UMI7 (1993), 461-170.
  • [9] J. Džurina, Asymptotic properties of third order delay differential equations, Czech. Math. J. 45 (1995), 443-148.
  • [10] S. R. Grace, R. P. Agarwal and M. F. Aktas, On oscillation criteria for third order functional differential equations, Indian J. Pure Appl. Math. 39 (2008), 491-507.
  • [11] S. R. Grace, R. P. Agarwal, R. Pavani and E. Thandapani, On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comp. 202(2008), 102-112.
  • [12] T. Kusano and M. Naito, Comparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Japan 3 (1981), 509-533.
  • [13] G. S. Ladde, V. Lakshmikantham and B. G Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
  • [14] N. Parhi and S. Pardi, On oscillation and asymptotic property of a class of third-order differential equations, Czech. Math. J. 49 (1999), 21-33.
  • [15] C. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay, Arch. Math. 36 (1981), 168-178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d987a80e-f4bd-47e7-860e-c66d001bc15e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.