PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Organic Cultivation Technology of Fiber Hemp (Cannabis Sativa L.) on Soil Agrochemical and Bioecological Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research into the correlations among components of soil biota is of significant importance for effective management of agroecosystems in organic agricultural production. Organic cultivation technologies contribute to increased nitrogen and phosphorus content in the soil, while reducing levels of P2O5 and K2O compared to inorganic methods. The influence of organic residue decomposers on macroelement composition in the soil has been examined, revealing a minimal impact on their levels. Organic technologies promote an augmentation of microorganisms, although there is a potential risk of heightened disease pathogens. It has been observed that under organic cultivation conditions, there is more intense tissue degradation, potentially attributed to higher microorganism activity. Transitional cultivation methods yield lower rates of degradation in comparison to organic techniques. The impact of organic technologies on the quantity of earthworms, nematodes, and springtails in the soil has been investigated. Organic practices have shown to increase their population, creating a favorable environment for soil biological indicators. Particular attention is given to correlation relationships between microorganisms responsible for nitrogen and phosphorus accumulation and the fungal component. High correlation values (r = 0.72–0.89) underscore the significance of comprehending these associations when employing organic cultivation methods. The study of correlations among soil biota components in organic production presents a promising task for the effective utilization of resources and the assurance of sustainable agroecosystem development.
Słowa kluczowe
Rocznik
Strony
356--365
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • State Biotechnological University, 44 Alchevskih, St., Kharkov, 61000, Ukraine
autor
  • Bila Tserkva National Agrarian University, 8/1, Cathedral Square, St., Bila Tserkva, Kyiv Region, 09117, Ukraine
autor
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agricultural Experimental Station named after M.I. Vavilov of the Institute of Pig Breeding and Agro-Industrial Production of the National Academy of Agrarian sciences of Ukraine, 86, Shvedska St., Poltava, 36014, Ukraine
Bibliografia
  • 1. Pylypchenko A., Marenych M., Hanhur V., Semenov A., Sakhno T., Ponomarenko S., Karpuk L., Rozhkov A. 2023. Formation of the quality indicators of hemp (Cannabis sativa L.) seeds sown under organic growing technology. Journal of Ecological Engineering, 24(8), 218–227.
  • 2. Adesina I., Bhowmik A., Sharma H., Shahbazi A. 2020. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture, 10(4), 129.
  • 3. Liang S., Xu Y., Chen Y., Yang M., Guo H. 2013. Advances and the effects of industrial hemp for the cleanup of heavy metal pollution. Acta Ecologica Sinica, 33(5), 1347–1356.
  • 4. Kok C.J., Coenen G.C.M., A de Heij A. 1994. The effect of fibre hemp (Cannabis sativa L.) on selected soil-borne pathogens. Journal of the International Hemp Association, 1, 6–9.
  • 5. Lotz L.A.P., Groeneveld R.M.W., Habekotte B., H. van Oene. 1991. Reduction of growth and reproduction of Cyperus esculentus by specific crops. Weed Research, 31(3), 153–160.
  • 6. Van der Werf H.M.G., van Geel W.C.A., Wijlhuizen M. 1995. Agronomic research on hemp (Cannabis sativa L.) in the Netherlands, 1987-1993. Journal of the International Hemp Association, 2(1), 14–17.
  • 7. Van der Werf H. 1994. Crop physiology of fibre hemp (Cannabis sativa L.). Doctoral thesis, Wageningen Agricultural University, Wageningen, the Netherland, 152.
  • 8. Soti P., Rugg S., Racelis A. 2016. Potential of cover crops in promoting mycorrhizal diversity and soil quality in organic farms. Journal of Agricultural Science, 8(8), 42–47.
  • 9. Konstantinovic B., Koren A., Kojić M., Samardzic N. 2021. Allelopathic properties of hemp. Contemporary Agriculture, 70(3-4), 101–107.
  • 10. Land M., Haddaway N.R., Hedlund K., Jorgensen H.B., Katterer T., Isberg P.E. 2017. How do selected crop rotations affect soil organic carbon in boreo-temperate systems? A systematic review protocol. Environmental Evidence, 6(9), 1–8.
  • 11. Fike J.H., Darby H., Johnson B.L., Smart L., Williams D.W. (2020). Industrial hemp in the USA: a brief synopsis. In: Crini G., Lichtfouse E. (eds). Sustainable Agriculture Reviews 42, 111.
  • 12. Merfield C.N. Industrial hemp and its potential for New Zealand. 1999. A Report for the 1999 Kellogg Rural Leadership Course, 33.
  • 13. Baldini M., Ferfuia C., Zuliani F., Danuso F. 2020. Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Industrial Crops and Products, 143, 111860.
  • 14. Gorchs G., Lloveras J., Serrano L., Cela S. 2017. Hemp yields and its rotation effects on wheat under rainfed Mediterranean conditions. Agronomy Journal, 109(4), 1551–1560.
  • 15. Chable V., Dawson J., Bocci R., Goldringer I. 2014. Seeds for organic agriculture: development of participatory plant breeding and farmers’ networks in France. In organic farming, prototype for sustainable agricultures: prototype for sustainable agricultures. In: Bellon S., Penvern S. (eds). Springer: Dordrecht, the Netherlands, 383–400.
  • 16. Cherney J.H., Small E. 2016. Industrial hemp in North America: production, politics and potential. Agronomy, 6(4), 58.
  • 17. Jalgaonwala R., Mahajan R. 2014. A review on microbial endophytes from plants: A treasure search for biologically active metabolites. Global Journal of Research on Medicinal Plants & Indigenous Medicine, 3(6), 263–277.
  • 18. Guerra C.A., Bardgett R.D., Caon L., Crowther T.W., Delgado-Baquerizo M., Montanarella L., Navarro L.M., Orgiazzi A., Singh B.K., Tedersoo L., Vargas-Rojas R., Briones M.J.I., Buscot F., Cameron E.K., Cesarz S., Chatzinotas A., Cowan D.A., Djukic I., van den Hoogen J., Lehmann A., Maestre F.T., Marín C., Reitz T., Rillig M.C., Smith L. C., de Vries F.T., Weigelt A., Wall D.H., Eisenhauer N. 2021. Tracking, targeting, and conserving soil biodiversity. Science, 371(6526), 239–241.
  • 19. Ilieva-Makulec K., Bielecki M., Makulec G. 2017. Plants with known antagonistic properties against pests: how they influence non-target free-living soil fauna? Studia Ecologiae et Bioethicae, 15(4), 41–53.
  • 20. McPartland J.M. 1996. A review of Cannabis diseases. Journal of the International Hemp Association, 3(1), 19–23.
  • 21. ElSohly M.A., Slade D. 2005. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sciences, 78(5), 539–548.
  • 22. Benelli G., Pavela R., Petrelli R., Cappellacci L., Santini G., Fiorini D., Sut S., Dall’Acqua S., Canale A., Maggi F. 2018. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Industrial Crops and Products, 122, 308–315.
  • 23. McPartland J. M., Sheikh Z. 2018. A review of Cannabis sativa-based insecticides, miticides, and repellents. Journal of Entomology and Zoology Studies, 6(6), 1288–1299.
  • 24. Pavela R., Maggi F., Iannarelli R., Benelli G. 2019. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Tropica, 193, 236–271.
  • 25. Mukhtar T., Kayani M.Z., Hussain M.A. 2013. Nematicidal activities of Cannabis sativa L. and Zanthoxylum alatum Roxb. against Meloidogyne incognita. Industrial Crops and Products, 42, 447–453.
  • 26. Bernard E.C., Chaffin A.G., Gwinn K.D. 2022. Review of nematode interactions with hemp (Cannabis sativa). Journal of Nematology, 54(1), 20220002.
  • 27. Van Biljon E.R. (2017). Nematode pests of tobacco and fibre crops. In: Fourie H., Spaull V., Jones R., Daneel M., De Waele D. (eds). Nematology in South Africa: a view from the 21st century. Springer, Cham, 285-310.
  • 28. Zhang Q.Y., Li Z.L., Han B.J. 2013. Immediate responses of cyst nematode, soil-borne pathogens and soybean yield to one-season crop disturbance after continuous soybean in northeast China. International Journal of Plant Production, 7(2), 341–353.
  • 29. Bonde T.A., Nielsen T.H., Miller M., Sørensen J. 2001. Arginine ammonification assay as a rapid index of gross N mineralization in agricultural soils. Biology and Fertility of Soils, 34, 179–184.
  • 30. Alef K., Kleiner D. 1987. Applicability of arginine ammonification as indicator of microbial activity in different soils. Biology and Fertility of Soils, 5, 148–151.
  • 31. Waksman S.A. 1959. Strain specificity and production of antibiotic substances. Х. Characterization and classification of species within the Streptomyces griseus group. Proceedings of the National Academy of Sciences of the United States of America, 45(7), 1043–1047.
  • 32. Baldani J.I., Reis V.M., Videira S.S., Boddey L.H., Baldani V.L.D. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, 384(1), 413–431.
  • 33. Vance E.D., Brookes P.C., Jenkinson D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707.
  • 34. Anderson J. P. E. 1982. Soil respiration. In: Page A. L., Miller R. H., Keeney D. R. (eds.). Methods of Soil Analysis. Agronomy monograph, 9(2). Chemical and biological properties, 2nd ed. SSSA and ASA. Madison, WI, 831–871.
  • 35. Nelson D.W., Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. In: Page A.L., Miller R.H., Keeney D.R. (Eds.). Methods of Soil Analysis. Agronomy Series, 9(2). Chemical and Microbiological Properties, 2nd ed. SSSA and ASA. Madison, WI, 539–579.
  • 36. Mehlich A. 1984. Photometric determination of humic matter in soils, a proposed method. Communications in Soil Science and Plant Analysis, 15(12), 1417–1422.
  • 37. Semenov A., Korotkova I., Sakhno T., Marenych M., Hanhur V., Liashenko V., Kaminsky V. 2020. Effect of UV-C radiation on basic indices of growth process of winter wheat (Triticum aestivum L.) seeds in pre-sowing treatment. Acta Agriculturae Slovenica, 116(1), 49–58.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9846a9d-cb53-472b-a7e6-4046ad00d9c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.