PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of VR to Analyze the Profitability of the Construction of a Robotized Station

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of software applications and the use of VR (Virtual Reality) techniques allow to improve the company’s financial result. The construction of models of robotic stations with robots using Virtual Robot technology allows to determine the time of the machining process. It allows its optimization through the selection of accelerations, tools, tooling strategies, and so on. Determining the time of a technological operation translates into savings. This allows you to decide on the purposefulness of the investment. In addition, modern software add-ons, for example, Signal Analyzer in RobotStudio, allow you to monitor the electricity consumption of a robotic station. The article presents a solution showing how, based on the construction of digital models and the use of VR, we can conclude about the profitability of the investment.
Rocznik
Strony
32--37
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
  • [1] L.M. CAMARINHA-MATOS, H. AFSARMANESH: Collaborative networks: a new scientific discipline. J. Intell. Manuf., 16(2005)4-5, 439-452.
  • [2] J. SHUMAN, J. TWOMBLY: Collaborative networks are the organization: an innovation in organization design and management. Vikalpa, 35(2010)1, 1-14.
  • [3] A. BURGHARDT, et al.: Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnicki Vjesnik-Technical Gazette, 24(2017)Suppl. 2, 345-348.
  • [4] A. BURGHARDT, et al.: Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik-Technical Gazette, 24(2017)2, 349-353.
  • [5] A. BURGHARDT, et al.: Robot-operated quality control station based on the UTT method. Open Eng., 7(2017)1, 37-42.
  • [6] P. GIERLAK, et al.: On-line manipulator tool condition monitoring based on vibration analysis. Mech. Syst. Signal Process., 89(2017), 14-26.
  • [7] P. GIERLAK: Hybrid position/force control in robotised machining. In: Solid State Phenomena. Trans Tech Publications, 2014, 192-199.
  • [8] A. BURGHARDT, et al.: Monitoring the parameters of the robotoperated quality control process. Adv. Sci. Technol. Res. J., 11(2017)1, 232-236.
  • [9] A. BURGHARDT, et al.: Experimental study of Inconel 718 surface treatment by edge robotic deburring with force control. Strength Mater., 49(2017)4, 594-604.
  • [10] P. GIERLAK, et al.: Eliminating the inertial forces effects on the measurement of robot interaction force. In: International Workshop on Modeling Social Media. Springer, Cham, 2018, 67-76.
  • [11] K. KURC, et al.: Non-contact robotic measurement of jet engine components with 3D optical scanner and UTT method. In: International Workshop on Modeling Social Media. Springer, Cham, 2018, 151-164.
  • [12] P. OBAL, et al.: Monitoring the parameters of industrial robots. In: International Workshop on Modeling Social Media. Springer, Cham, 2018, 230-238.
  • [13] D. SZYBICKI, et al.: Robot-Assisted Quality Inspection of Turbojet Engine Blades. In: International Workshop on Modeling Social Media. Springer, Cham, 2018, p. 337-350.
  • [14] D. SZYBICKI, et al.: Calibration and verification of an original module measuring turbojet engine blades geometric parameters. Arch. Mech. Eng., 66(2019)1, 97-109.
  • [15] C. BURDEA GRIGORE, P. COIFFET: Virtual reality technology. John Wiley & Sons, New York, 2003.
  • [16] M. MIHELJ, D. NOVAK, S. BEGUS: Virtual reality technology and applications. Springer, German 2014.
  • [17] F. SHAO, A.J. ROBOTHAM, K.K. HOK: Development of a 1:1 scale true perception virtual reality system for design review in automotive industry. 2012.
  • [18] A.G. GALLAGHER, et al.: Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann. Surg., 241(2005)2, 364-372.
  • [19] E. MATSAS, G.C. VOSNIAKOS: Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. Int. J. Interact. Des. Manuf. (IJIDeM), 11(2017)2, 139-153.
  • [20] M. KOŹLAK, A. KURZEJA, A. NAWRAT: Virtual reality technology for military and industry training programs. In: Vision based systems for UAV applications. Springer, Heidelberg, 2013. 327-334.
  • [21] S. ORTIZ JESSICA, et al.: Virtual training for industrial automation processes through pneumatic controls. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics. Springer, Cham, 2018. 516-532.
  • [22] F. DE PACE, et al.: An augmented interface to display industrial robot faults. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics. Springer, Cham, 2018. 403-421.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d97380bd-ac8f-4e70-b595-2d34a07081ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.