PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Objective Optimization Based Approaches for Active Power Filter Design- A Comparison

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wieloparametryczna optymalizacja projektowania aktywnych filtrów mocy – porównanie metod
Języki publikacji
EN
Abstrakty
EN
This paper introduces an optimal active power filter design method to compensate simultaneously current harmonics and reactive power of a nonlinear load. The power filter consists of a passive RL low-pass filter placed in series with the load and a pure active filter which has RL elements connected in series with insulated gate bipolar transistors (IGBT) based voltage source converter. The filter is supposed to inject a current into the connection node of the load and grid in order to eliminate current harmonics and its imaginary current. The voltage source converter is placed in a hysteresis feedback control loop to generate the reference current. The band width and output amplitude of the hysteresis controller are optimized with inductance of RL filters. In solving the optimization problem, three objective functions are considered which include minimizing current total harmonic distortion (THD), maximizing power factor and minimizing the IGBT bridge current. The four optimization methods applied are the goal attainment, max ordering, non-dominated sorting genetic algorithm-II and strength Pareto evolutionary algorithm 2 (SPEA2) methods. The results of the four optimization methods are compared and it is shown that the SPEA2 method gives the best performance in terms of minimizing current THD and maximizing the power factor.
PL
Przedstawiono metody optymalizacji projektowania aktywnych filtrów mocy umożliwiające kompensację prądów harmonicznych i mocy biernej przy obciążeniu nieliniowym. Analizowany filtr składa się z pasywnego filtru dolnoprzepustowego RL połączonego szeregowo z obciążeniem i filtrem aktywnym. Filtr aktywny mam elementy R:L dołączane z wykorzystaniem tranzystora IGBT.
Rocznik
Strony
98--103
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electrical, Electronic & Systems Engineering, University Kebangsaan Malaysia, Selangor, Malaysia
autor
  • Department of Electrical, Electronic & Systems Engineering, University Kebangsaan Malaysia, Selangor, Malaysia
autor
  • Department of Electrical, Electronic & Systems Engineering, University Kebangsaan Malaysia, Selangor, Malaysia
autor
  • Department of Electrical, Electronic & Systems Engineering, University Kebangsaan Malaysia, Selangor, Malaysia
Bibliografia
  • [1] Haque, S.E., “Influence of source impedance on the performance of a fixed filter-thyristor controlled reactor (FFTCR) type compensator” Electric Power Systems Research, 8 (1984), No. 1, 83-91.
  • [2] Reichert, K., “Controllable Reactive Compensation” International Journal of Electrical Power & Energy Systems, 4 (1982), No. 1, 51-61.
  • [3] Lin, C.E., Chen, T.C., “Real-time optimal reactive power control of static VAR compensators” International Journal of Electrical Power & Energy Systems, 13 (1991), No. 2, 103-110.
  • [4] Qidwai, S.U.A. Bettayeb, M. “A new robust scheme for harmonic elimination” Electric Power Systems Research, 43 (1997), no, 1, 45-51.
  • [5] Shatshat, R. El Kazerani, M. Salama, M.M.A. “Power quality improvement in 3-phase 3-wire distribution systems using modular active power filter” Electric Power Systems Research, 61(2002), No. 3, 185-194.
  • [6] Groşan, C. Dumitrescu, D. “A comparison of multiobjective evolutionary algorithms.” Acta Universitatis Apulensis, 4 (2002).
  • [7] Deb, K. Pratap, A. Agarwal, S. and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transaction on Evolutionary Computation, 6 (2002), No. 2, 182- 197.
  • [8] Deb, K. "Multi-Objective Optimization using Evolutionary Algorithms", John Wiley & Sons ISBN 047187339, 2001.
  • [9] Lahanas, M. Milickovic, N. D. Baltas, and N. Zamboglou. “Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy”. In E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne (Eds.), Proceedings of the First International Conference on Evolutionary Multi- Criterion Optimization (EMO 2001), 1993 pp. 574–587.
  • [10] Zitzler, E. Laumanns, M.and L. Thiele. “SPEA2: Improving the Strength Pareto Evolutionary Algorithm” TIK-Report 103, 2001.
  • [11] Corne, D. W. Knowles, J. D. and M. J. Oates. “The pareto envelope-based selection algorithm for multiobjective optimization”. In M. S. et al. (Ed.), Parallel Problem Solving from Nature – PPSN VI, pp. 839–848. Springer, Berlin, 2000.
  • [12] Zitzler, E. Deb, K.and L. Thiele. “Comparison of multiobjective evolutionary algorithms: Empirical results”. 173–195, Evolutionary Computation 8(2) 2000.
  • [13] Zitzler, E. and L. Thiele. “Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach”. 257–271, IEEE Transactions on Evolutionary Computation 3(4) 1999.
  • [14] Šeděnka, V. Raida, Z. “Critical Comparison of Multi-objective Optimization Methods: Genetic Algorithms versus Swarm Intelligence” Radioengineering, Vol. 19, No. 3, September 2010.
  • [15] Fu, X. WANG, R. “Optimization design of active power filter based on particle swarm optimization algorithm,” IEEE trans on Electro technical Application, vol. 26, pp. 62-64, 2007.
  • [16] Gary W. Chang,, Chia-Ming Yeh, and Wei-Cheng Chen, “ Meeting IEEE-519 Current Harmonics and Power Factor Constraints With a Three-Phase Three-Wire Active Power Filter Under Distorted Source Voltages,” IEEE Transactions on Power Delivery, Vol. 21, No. 3, pp 1648-1654, 2006.
  • [17] Rafiei S.M.R. and Iravani, R., “Optimal and Adaptive Compensation of Voltage and Current Harmonics under Non Stiff Voltage Conditions” IEE Proceedings of Generation, Transmission, and Distribution. Vol. 152, Issue 5, pp. 661 – 672, 2005.
  • [18] Zhao, S. Wang, Y. Jiao, L. “Adaptive genetic algorithm based optimal design approach for passive power filters,” Proceedings of the CSEE, vol. 24, pp. 173-176, 2004.
  • [19] Shigang,F.Qian,A. “Application of fast and elitist non-dominated sorting generic algorithm in multi-objective reactive power optimization,” Transactions of China Electrotechnical Society, Vol.22, No.12, pp. 156-151, December 2007.
  • [20] Na, H.E. Jian, W.U. Dian-guo, X.U. “Multiobject optimization of hybrid active power filter based on genetic algorithm,”. Proceeding of the CSEE, vol. 28, pp. 63-69, 2008.
  • [21] Bula, D. Pasko, M. “Dynamical properties of hybrid power filter with single tuned passive filter” Electrical Review, ISSN 0033- 2097, R. 87 NR 1/2011, PP.91-95
  • [22] Xiwu, L. Yansong, W. Yanli. M. “Optimal configuring of filters in distribution network based on genetic algorithm,” Electrotechnical Application, Vol.27, No.10, pp. 10-13, 2008.
  • [23] Rafiei, S.M.R. Kordi, M.H. Griva, G. and A. Tenconi, “ Nash Genetic Algorithm Based Optimal Design of Hysteresis Inverters for Active Power Filtering Applications, “IEEE/Power Tech 2009, Bucharest, Romania, June-July 2009.
  • [24] Jiang, Y. Liao, D. “Multi-objective Optimal Design for Hybrid Active Power Filter Based on Composite Method of Genetic Algorithm and Particle Swarm Optimization”, International Conference on Artificial Intelligence and Computational Intelligence 2009.
  • [25] Corasaniti, V. F. Barbieri, M. B. P. L. Arnera, and M. I. Valla, “Hybrid active filter for reactive and harmonics compensation in a distribution network,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 670–677, Mar. 2009.
  • [26] Kumar, B. S. Reddy, K. R. S. Archana, “The Application of PSO To Hybrid Active Power Filter Design For 3 Phase 4-Wire System With Balanced & Unbalanced Loads”, International Journal of Advances in Engineering & Technology, Vol. 2, Issue 1, pp. 32-42 ISSN: 2231-1963, Jan. 2012.
  • [27] Ucar, F. Cotli, R. Danbil, B. “Three Level Inverter Based Shunt Active Power Filter Using Multi-Level Hysteresis Band Current Controller” Electrical Review, ISSN 0033-2097, R. 88 NR 11a/2012, PP.227-231
  • [28] Yue; H. Li; M. G. Zhou; K. Wang; J. Wang, “Multi-objective optimal power filter planning in distribution network based on fast nondominated sorting genetic algorithms”, IEEE 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 234-240, 2011.
  • [29] Rafiei, S.M.R. Kordi, M.H. H.A. Toliyat, M. Barakati, “IEEE-519 based optimal UPQC design under distorted voltages using Pareto based Min-Max constrained multi-objective optimization” North American Power Symposium (NAPS), pp. 1-7, 2011.
  • [30] Luo, AShuai, .Z. K. W. J. Zhu, and Z. J. Shen, “Combined system for harmonic suppression and reactive power compensation,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 418–428, Feb. 2009.
  • [31] Gembicki, F.W. "Vector Optimization for Control with Performance and Parameter Sensitivity Indices," Ph.D. Thesis, Case Western Reserve Univ., Cleveland, Ohio, 1974.
  • [32] Du, D.Z. Minimax and its applications, in: R. Horst, P.M. Pardalos (Eds.), Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht, pp. 339-367, 1995.
  • [33] Kouvelis, P. Yu, G. “Robust Discrete Optimization and Its Applications”. Kluwer, Dordrccht, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d972e037-6415-4e13-bcc1-0494195b6986
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.