PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mathematical modeling of traveling autosolitons in fractional-order activator-inhibitor systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, basic properties of traveling spatially nonhomogeneous auto-wave solutions in nonlinear fractional-order reactiondiffusion systems are investigated. Such solutions, called autosolitons, arise in a stability region of the system and can coexist with the spatially homogeneous states. By a linear stability analysis and computer simulation, it is shown that the order of the fractional derivative can substantially change the properties of such auto-wave solutions and significantly enrich nonlinear system dynamics. The results of the linear stability analysis are confirmed by computer simulations of the generalized fractional van der Pol-FitzHugh-Nagumo model. A common picture of traveling auto-waves including series in time-fractional two-component activator-inhibitor systems is presented. The results obtained in the article for the distributed system have also been of interest for nonlinear dynamical systems described by fractional ordinary differential equations.
Rocznik
Strony
411--418
Opis fizyczny
Bibliogr. 35 poz., wykr.
Twórcy
autor
  • Rzeszow University of Technology, 8 Powstancow Warszawy St., 35-959 Rzeszow, Poland
autor
  • Institute of Applied Problems of Mechanics and Mathematics NAS of Ukraine, 3b Naukova St., 79060 Lviv, Ukraine
Bibliografia
  • [1] M.D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer Science & Business Media, 2011.
  • [2] V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Springer, 2012.
  • [3] F. Mainardi, Fractional calculus and waves in linear viscoelasity, Imperial College Press, 2010.
  • [4] C. Monje, Y. Chen, B. Vinagre, D. Xue, and D. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications, Springer, 2010.
  • [5] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control, vol. 13, Springer, 2015.
  • [6] V. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, 2010.
  • [7] B. West, Natures Patterns and the Fractional Calculus (Fractional Calculus in Applied Sciences and Engineering), De Gruyter, 2017.
  • [8] Y. Povstenko, Fractional Thermoelasticity, Springer, 2015.
  • [9] B. Henry, T. Langlands, and S. Wearne, “Turing pattern formation in fractional activator-inhibitor systems”, Phys. Rev. E 72, 026101 (2005).
  • [10] V. Gafiychuk and B. Datsko, “Pattern formation in a fractional reaction-diffusion system”, Phys. A 365(2), 300–306 (2006).
  • [11] D. Bolster, D. Benson, and K. Singh, “Upscaling chemical reactions in multicontinuum systems: When might time fractional equations work?”, Chaos, Solitons and Fractals 102(9), 414–425 (2017).
  • [12] V. Shkilev, “A necessary condition for the emergence of diffusion instability in media with nonclassical diffusion”, J. Exp. Theor. Phys. 110(1), 162–169 (2010).
  • [13] H. Haubold, M. Mathai, and R. Saxena, “Further solutions of fractional reaction–diffusion equations in terms of the Hfunction”, J. Comp. Appl. Math. 235(5), 1311–1316 (2011).
  • [14] V. Mendez, S. Fedotov, and W. Horsthemke, Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities, Springer, 2010.
  • [15] G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, 1997.
  • [16] V.A. Vasiliev, Yu.M. Romanovskii, D.S. Chernavskii, and V.G. Yakhno, Autowave Processes in Kinetic Systems: Spatial and Temporal Self-Organization in Physics, Chemistry, Biology, and Medicine, Kluwer, 1987.
  • [17] B. Kerner and V. Osipov, Autosolitons, Kluwer, 1994.
  • [18] H.-G. Purwins, H. Bodeker, and S. Amiranashvili, “Dissipative solitons”, Adv. Phys. 59(5), 485–701 (2010).
  • [19] B.A. Grzybowski, K.J. Bishop, C.J. Campbell, M. Fialkowski, and S.K. Smoukov, “Micro- and nanotechnology via reactiondiffusion”, Soft. Matter. 1(2), 114–128 (2005).
  • [20] V. Gafiychuk and B. Datsko, “Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems”, Phys. Rev. E 75: R, 055201-1-4 (2007).
  • [21] V. Gafiychuk, B. Datsko, and V. Meleshko, “Mathematical modeling of time fractional reaction-diffusion systems”, J. Comp. Appl. Math. 372(1), 215–225 (2008).
  • [22] V. Gafiychuk and B. Datsko, “Different Types of instabilities and complex dynamics in reaction-diffusion systems with fractional derivatives”, J. Comp. Nonlin. Dyn. 7(3), 031001 (2012).
  • [23] B. Datsko and V. Gafiychuk, “Complex nonlinear dynamics in subdiffusive activator-inhibitor systems”, Comm. Nonlin. Sci. Num. Sim. 17(4), 1673–1680 (2012).
  • [24] B. Datsko and V. Gafiychuk, “Chaotic dynamics in Bonhoffervan der Pol fractional reaction-diffusion system”, Signal Processing 91(3), 452–460 (2011).
  • [25] B. Datsko, V. Gafiychuk, and I. Podlubny, “Solitary travelling auto-waves in fractional reaction-diffusion systems”, Commun. Nonlinear Sci. Numer. Simulat. 23(1), 378–387 (2015).
  • [26] M. Caputo, Elasticita e dissipazione, Zanichelli, Bologna, 1969.
  • [27] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.
  • [28] Y. Li, Y. Chen, and I. Podlubny, “Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability”, Comp. Math. Appl. 59(5), 1810–1821 (2010).
  • [29] A. Chikriy and I. Matichin, “Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross”, J. of Automation and Inform. Scien. 40(6), 1–11 (2008).
  • [30] K. Diethelm, N.J. Ford, A.D. Freed, and Yu. Luchko, “Algorithms for the fractional calculus: A selection of numerical methods”, Comput. Meth. Appl. Mech. Eng. 194(6), 743–773 (2005).
  • [31] D. Mozyrska, E. Girejko, and M. Wyrwas, “Fractional nonlinear systems with sequential operators”, Central European Journal of Physics, 11(10), 1295–1303 (2013).
  • [32] I. Podlubny, T. Skovranek, and B. Datsko, “Recent advances in numerical methods for partial fractional differential equations”, 15th ICC Conf. Proc. IEEE 454–457 (2014).
  • [33] K. Burrage, A. Cardone, R. D’Ambrosio, and B. Patemoster, “Numerical solution of time fractional diffusion systems”, Applied Numerical Mathematics 11, 82–94 (2017).
  • [34] W. Malesza and M. Macias, “Numerical solution of fractional variable order linear control system in state-space form”, Bull. Pol. Ac.: Tech. 65(5), 715–724 (2017).
  • [35] V. Gafiiichuk, B. Kerner, I. Lazurchak, and V. Osipov, “The mechanism of ’leading center’ in homogeneous active systems with diffusion”, Mikroelektr. 20(1), 90–94 (1991).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d972367e-5a95-4978-9308-3adf63ddf0df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.