PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the throttle effect in a mine drift

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The throttle effect is a phenomenon, which may occur during a fire underground, causing unforeseen smoke spread. This paper focuses on the modelling of the throttle effect in a mine drift, using a CFD software. The aim of the paper is to investigate whether the CFD tool is able to predict and reproduce the throttle effect for fire scenarios underground. Experimental data from fire experiments in a model-scale mine drift and modelling results from a CFD model were used during the analysis. It was found that the CFD model was not able to fully reproduce the throttle effect for fire scenarios in a mine drift. The inability was due to the under prediction of the fire gas temperature at the ceiling level and the over prediction of the temperatures at the lower levels. The difficulties occurred foremost during transient periods with high fire growth rates. Given the difficulties in modelling the thermal stratification and the throttle effect, the use of CFD models should be mainly for qualitative analysis. Qualitative analysis could possibly be performed for non-transient and low intensity fires.
Rocznik
Strony
277--295
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • The University of Queensland, Sustainable Minerals Institute, Australia
Bibliografia
  • [1] Hansen R, Ingason H. Heat release rates of multiple objects at varying distances. Fire Saf J 2012;52:1-10. https://doi.org/10.1016/j.firesaf.2012.03.007.
  • [2] Hwang CC, Chaiken RF. Effect of duct fire on the ventilation air velocity. In: Report of investigations 8311. Bureau of Mines, United States Department of Interior; 1978.
  • [3] Lee CK, Chaiken RF, Singer JM. Interaction between duct fires and ventilation flow: an experimental study. Combust Sci Technol 1979;20:59-72. https://doi.org/10.1080/00102207908946897.
  • [4] Litton CD, DeRosa M, Li J-S. Calculating fire-throttling of mine ventilation airflow. In: Report of investigations 9076. Bureau of Mines, United States Department of Interior; 1987.
  • [5] Hansen R. Mass flow during fire experiments in a model- scale mine drift with longitudinal ventilation. Trans Inst Min Metall Sect A 2020;129:68-81. https://doi.org/10.1080/25726668.2020.1766302.
  • [6] Vaitkevicius A, Carvel R, Colella F. Investigating the throttling effect in tunnel fires. Fire Technol 2016;52:1619-28. https://doi.org/10.1007/s10694-015-0512-z.
  • [7] Edwards JC, Hwang CC. CFD analysis of mine fire smoke spread and reverse flow conditions. NIOSH; 1999.
  • [8] Edwards JC, Hwang CC. CFD modelling of fire spread along combustibles in a mine entry. In: SME annual meeting and exhibit, march 27-29, St. Louis, Missouri; 2006.
  • [9] Edwards JC, Franks RA, Friel GF, Yuan L. Experimental and modelling investigation of the effect of ventilation on smoke rollback in a mine entry. NIOSH; 2006.
  • [10] Edwards JC, Friel GF, Yuan L, Franks RA. Smoke reversal interaction with diagonal airway - its elusive character. NIOSH; 2006.
  • [11] Friel GF, Yuan L, Edwards JC, Franks RA. Fire-generated smoke rollback through crosscut from return to intake - experimental and CFD study. NIOSH; 2006.
  • [12] Trevits MA, Yuan L, Teacoach KA, Valoski MP, Urosek JE. Understanding mine fire disasters by determining the characteristics of deep-seated fires. In: SME annual meeting and exhibit, february 22-25, Denver, Colorado; 2009.
  • [13] Hansen R. Smoke spread calculations for fires in underground mines. In: Report 2010:07. Mälardalen University; 2010.
  • [14] Yuan L, Zhou L, Smith AC. Modeling carbon monoxide spread in underground mine fires. Appl Therm Eng 2016; 100:1319-26. https://doi.org/10.1016/j.applthermaleng.2016.03.007.
  • [15] Lee C, Nguyen V. A study on the fire propagation characteristics in large-opening multi-level limestone mines in Korea. Geosyst Eng 2016;19:317-36. https://doi.org/10.1080/12269328.2016.1249804.
  • [16] Hansen R. Modelling temperature distributions and flow conditions of fires in an underground mine drift. Geosyst Eng 2020;23:299-314. https://doi.org/10.1080/12269328.2018. 1429954.
  • [17] Hansen R, Ingason H. Model scale fire experiments in a model tunnel with wooden pallets at varying distances. Res Rep SiST 2010;8. Västerås: Mälardalen University; 2010.
  • [18] Newman JS. Experimental evaluation of fire-induced stratification. Combust Flame 1984;57:33-9. https://doi.org/10.1016/0010-2180(84)90135-4.
  • [19] Ingason H. Model scale tunnel fire tests. SP report 2005:49. Borås. Swedish National Testing and Research Institute; 2005.
  • [20] McGrattan K, Hostikka S, Floyd J, McDermott R, Vanella M. Fire Dynamics simulator, user's guide (NIST special publication 1019. Gaithersburg: NIST; 2020. Sixth Edition.
  • [21] Li YZ, Ingason H, Lönnermark A. Numerical simulation of Runehamar tunnel fire tests. In: 6th international conference on tunnel safety and ventilation. Austria: Graz; 2012. p. 203-10.
  • [22] Hankalin V, Ahonen T, Raiko R. On thermal properties of a pyrolysing wood particle. Finnish-Swedish Flame Days. 2009.
  • [23] Bedon C. Structural glass systems under fire: overview of design issues, experimental research, and developments. Advances in Civil Engineering; 2017.
  • [24] Hansen R, Ingason H. Full-scale fire experiments with mining vehicles in an underground mine. In: Research report SiST 2013:2. Västerås: Mälardalen University; 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d96f1975-b152-4998-84f1-ff0265b0454c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.