
 

A R C H I V E S  
o f  

F O U N D R Y  E N G I N E E R I N G  
 
 
 

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences 

ISSN (1897-3310) 
Volume 15 

Issue 1/2015 
 

51 – 68 
 

11/1 

 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 5 ,  I s s u e  1 / 2 0 1 5 ,  5 1 - 6 8  51 

 
Prediction of Secondary Dendrite Arm 

Spacing in Squeeze Casting Using Fuzzy 
Logic Based Approaches 

 
M.G.C. Patel a, P. Krishna a, M.B. Parappagoudar b, * 

aDepartment of Mechanical Engineering, National Institute of Technology Karnataka-Surathkal-575025, India 
bDepartment of Mechanical Engineering, Chhatrapati Shivaji Institute of Technology, Durg (C.G) 491001, India 

*Corresponding author.: E-mail address:  maheshpg@gmail.com 
 
 

Abstract 
 
The quality of the squeeze castings is significantly affected by secondary dendrite arm spacing, which is influenced by squeeze cast input 
parameters. The relationships of secondary dendrite arm spacing with the input parameters, namely time delay, pressure duration, squeeze 
pressure, pouring and die temperatures are complex in nature. The present research work focuses on the development of input-output 
relationships using fuzzy logic approach. In fuzzy logic approach, squeeze cast process variables are expressed as a function of input 
parameters and secondary dendrite arm spacing is expressed as an output parameter. It is important to note that two fuzzy logic based 
approaches have been developed for the said problem. The first approach deals with the manually constructed mamdani based fuzzy 
system and the second approach deals with automatic evolution of the Takagi and Sugeno’s fuzzy system. It is important to note that the 
performance of the developed models is tested for both linear and non-linear type membership functions. In addition the developed models 
were compared with the ten test cases which are different from those of training data. The developed fuzzy systems eliminates the need of 
a number of trials in selection of most influential squeeze cast process parameters. This will reduce time and cost of trial experimentations.  
The results showed that,   all the developed models can be effectively used for making prediction. Further, the present research work will 
help foundrymen to select parameters in squeeze casting to obtain the desired quality casting without much of time and resource 
consuming.   
 
Keywords: Squeeze casting process, Secondary dendrite arm spacing, Fuzzy logic, Adaptive network based fuzzy interface system 
(ANFIS) 

Nomenclature   

FLC Fuzzy logic controller a1,........a6 Half base widths  
L Low pi, qi, ri & ui Coefficient of consequent part 
M Medium SDAS Secondary dendrite arm spacing 
H High GA-NN Genetic algorithm neural network 
A Time delay BPNN Back propagation neural network 
B Pressure duration MAPE Mean absolute percent error 
C Squeeze pressure R2 Co-efficient of correlation determination 
D Pouring temperature ANFIS Adaptive network based fuzzy interface system 
E Die temperature Mctrimf Manually constructed triangular membership function 
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µ Membership function Mcbellmf Manually constructed bell shape membership function 
ANNs  Artificial neural networks Mcgaussmf Manually constructed gaussian membership function 
GA Genetic algorithms Angaussmf Adaptive network gaussian membership function 
FL Fuzzy logic Antrimf Adaptive network triangular membership function 
RMSE Root mean square error Anbellmf Adaptive network bell shape membership function 

 
 
1. Introduction 
 

The second lightest material next to magnesium is aluminium 
and it is also the third largest material abundantly available in the 
earth crust. Aluminium alloys, widely used as a casting material 
from the past few decades due to its inherent properties such as 
light weight, recycling potential, reduce fuel consumptions to save 
energy and provides better environmental protection for the future 
generation [1]. Silicon (Si) found to be the better alloying element 
in aluminium alloys, since it improves fluidity, abrasion 
resistance, reduces melting temperature, lowers density,  cost 
effective and easily available [2]. Addition of Copper (Cu) and 
Magnesium (Mg) are necessary to enhance the strength of Al-Si 
alloys [2]. It is interesting to note that Al-Si-Cu-Mg alloys have 
shown better casting characteristics with improved cooling rate, 
minimum porosity, reliability, good dimensional accuracy, 
modified eutectic silicon particles, better mechanical, micro and 
macro-structure properties.[3]. However it is important to note 
that the LM20 alloy used for the present study constitutes these 
alloy elements. .     

The squeeze casting process is based on the principle of 
pressurized solidification concept, suggested by D.K. Chernov in 
the early 1878. Porosity, shrinkage, segregations are the major 
limitations and have drawn much attention of the researchers in 
squeeze casting process development. Squeeze casting process 
combines the desirable features of gravity, pressure die casting 
and forging processes. It is important to note that mechanical and 
micro-structure properties are largely influenced by its cooling 
rate of cast alloys. Higher cooling rate reduces grain size, grain 
boundary, shrinkage porosity, segregation between dendrites, 
modifies eutectic silicon particles and decreases secondary 
dendrite arm spacing [4]. Higher solidification rate can be 
achieved with proper control of squeeze cast process parameters 
like time delay, pressure duration, squeeze pressure, die 
temperature and pouring temperature. Improper choice and levels 
of the aforementioned parameters may lead to possible casting 
defects such as oxide inclusions, over/under filling, extrusion, die 
sticking, segregations, cold laps, poor surface quality, 
dimensional inaccuracy and case debonding [5]. It is important to 
note that these defects finally affect the microstructure 
characteristics like secondary dendrite arm spacing (SDAS), 
which can be minimized by proper control of squeeze cast process 
variables. Hence it is of paramount importance to develop the 
squeeze cast process model and analyze the input (squeeze cast 
process variables) and output (secondary dendrite arm spacing) 
relationships of the process.   

The potential applications of squeeze cast components are 
found in aerospace and automobile sectors. This made 
researchers/investigators to carry out a great deal of research work 
on micro-structural characteristics during 1990’s and 2000’s 

throughout the world. It is important to note that majority of the 
research work happened during those periods was based on 
theoretical and experimental work. Lee et al., (1998) made an 
attempt to investigate the effects of gap distance on cooling rate 
and secondary dendrite arm spacing of gravity and squeeze cast 
wrought aluminium alloy using numerical and experimental 
approach [6]. It is important to note that the applied squeeze 
pressure reduces the air gap between the melt and the die interface 
leads to higher heat transfer rate (cooling rate) results in lower 
secondary dendrite arm spacing. Yang (2007) studied the effect of 
solidification time on the mechanical properties of LM6 and ZA3 
alloys utilizing two analytical models namely steady state heat 
flow model and gracia’s virtual model [7]. In addition, 
performance of the developed models was compared with the 
practical castings and the average percent deviations were found 
to be equal to 27 for LM6 and 20 for ZA3 alloys respectively. The 
effect of pouring temperatures and squeeze pressures on cast 
structure and tensile properties of wrought aluminium 7010 alloy 
had been investigated by Yue (1997) [8]. It is important to note 
that experiments performed by keeping the die temperature and 
pressure duration as constant. Moreover in their work, it was 
observed that the time delay parameter acts as a crucial role 
wherein fine grain structure and better tensile properties were 
achieved when the alloy was pressurized between its liquidus and 
solidus temperature. Ming et al., (2007) investigated the effects of 
different squeeze pressures on secondary dendrite arm spacing, 
tensile strength and percentage elongation of squeeze cast Al-Cu 
based alloys [9]. It is also important to mention that experiments 
were performed by keeping pressure duration, die and pouring 
temperature at fixed values. In addition the results showed that, 
the applied pressure eliminates porosity and the alloy grain 
structure was clearly characterized by reduced secondary dendrite 
arm spacing (SDAS) with increase in applied pressure. Hajari and 
Divandari (2008) investigated the influence of different squeeze 
pressure on secondary dendrite arm spacing and the mechanical 
properties of 2024 wrought aluminium alloy [10]. However, it is 
important to note that pouring temperature, die temperature and 
pressure duration was kept at fixed values while performing 
experiments. Hong et al., (2000) [11], made an investigation to 
analyse the effects of  pouring temperature, applied pressure, time 
delay, die temperature, degassing and inoculation treatments on 
formation of macro-defects in Al7%Si alloy. It is important to 
note that, the experiments were performed utilizing the classical 
engineering approach (that is, varying one parameter at a time and 
keeping the rest at the fixed values). Maleki et al., (2009) [12] 
used a classical engineering approach for performing experiments 
and analyse the effects of squeeze pressure, melt and die 
temperatures on secondary dendrite arm spacing and aspect ratio 
of LM13 alloy. It is to be noted that the effect of pressure duration 
and time delay parameters was left out in their analysis. 
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Following observations have been made from the above discussed 
literature. 
 Most of the author’s attempted conventional engineering 

approach for conducting and analysis, wherein large number 
of experiments are to be conducted with an increase in 
number of process variables and their levels.  

 The results obtained from the said approach will not reveal 
the complete information about the impact of the interaction 
(combined) effect of the process variables on the response.    

 The practical guidelines suggested by the authors to 
optimize squeeze casting process may not help the foundry 
men for selection of process parameters unless input-output 
relationships are expressed in mathematical form.            

In recent years limited research efforts made by the authors to 
develop input-output relationship using statistical and taguchi 
parametric design. Vijian and Arunachalam (2006) [13] utilized 
taguchi method for experimentation and developed multi variable 
linear regression equation which includes output (hardness and 
tensile strength) as a function of input (squeeze pressure, pressure 
duration and die temperature) parameters. . However, the 
developed regression equation includes only linear terms and 
neglected the effects of square and interaction terms, moreover, 
pouring temperature variations was left out in their analysis. Bin 
SB et al., (2013) investigated the strength and ductility of squeeze 
cast AlSi9Cu3 alloys via taguchi tools [14]. The authors failed to 
develop the model, which could predict the response, in addition 
pressure duration contributions was left out in their analysis. The 
research efforts was made by Senthil and Amrithagadeswaran to 
study the effects of squeeze cast process variable on hardness, 
ultimate tensile strength and yield strengths of LM24 alloy [15 & 
16]. In addition, the developed regression equations are not used 
for the prediction, percent contribution of square and interaction 
terms were not estimated and moreover the influence of time 
delay process parameter was left out in their analysis. In recent 
years, many researchers applied soft computing tools, such as 
artificial neural networks (ANNs), fuzzy logic (FL) and genetic 
algorithm (GA) approaches and their different combinations  to 
model and analyse the manufacturing processes [17]. GA has 
been adopted to solve multi-objective optimization of various 
responses of squeeze casting process, Vijian and Arunachalam 
(2006) [13]. It is important to note that the objective function 
includes only main effect parameters and the paramount 
importance of square and interaction parameters in identifying the 
non-linear effects are neglected in their research work. Wang RJ 
et al., (2012) [18] used artificial neural networks to predict the 
temperature difference of the squeeze cast part. It was observed 
that, ANNs finds better prediction and reduces the need of costly 
simulation software,  and need of experts to interpret the  results. 

Research efforts were made by some authors to develop an 
auxiliary hybrid system (combining desirable features of GA and 
ANNs) to tackle the problems related to different moulding sand 
and pressure die casting process [19-22]. It is also important to 
make a note that some authors made efforts to model and analyze 
the important manufacturing processes with the help of embedded 
type hybrid systems (combining desirable features of GA and FL, 
ANNs and FL) [23-27]. It is interesting to note that many authors 
have successfully implemented embedded type hybrid systems for 
various manufacturing processes and proved it as a cost effective 
tool to model and analyze the complex manufacturing processes.  
To the best of author’s knowledge, no much of the work has been 
reported in literature to carry out the forward mapping of squeeze 
casting process utilizing fuzzy logic based approaches. In the 
present work an attempt has been made to predict the secondary 
dendrite arm spacing (SDAS) utilizing Mamdani and Takagi and 
Sugeno based fuzzy logic approaches. Approach 1 deals with 
development of mamdani based fuzzy logic system where in 
consequent, rule base and antecedent parts are constructed with 
the help of human expertise. Approach 2 follows development of 
adaptive network based fuzzy interface system popularly known 
as Takagi and Sugeno’s model. This model deals with the 
automatic evolution of consequent and antecedent parts.  It is to 
be noted that linear and non-linear membership function 
distributions are used for both of the approaches.Finally, the 
performance all models are compared in making the prediction of 
SDAS in squeeze casting. 
 
 

2. Experimental details 
 
The casting quality depends mainly on the composition of the 
alloy, processing method and machine related parameters. In 
squeeze casting process the solidification occurs with applied 
pressures and is considered as one of the near net shape 
manufacturing process. It is important to note that, the 
microstructure of the squeeze castings depends on machine 
related process parameters. Figure 1, shows the schematic 
diagram of input (Time delay, pressure duration, squeeze 
pressure, pouring temperature and die temperature) and output 
(secondary dendrite arm spacing) of the squeeze casting process. 
The range of input squeeze cast process parameters considered in 
the present study is shown in Table 1. The process parameters and 
their levels have been finalized based on available literature and 
consulting experts 
 

  
 

 
 
 

 
 
 

Fig. 1. Input and Output model of the squeeze casting process 
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Table 1. 
Squeeze cast process parameters and their ranges 

Process parameters Notation Units Level-1 Level-2 Level-3 Level-4 Level-5 
Time delay, (Td) A     S      03 05 07 09 11 
Pressure duration, (Dp) B     S 10 20 30 40 50 
Squeeze pressure, (Sp) C MPa 0.1 50 100 150 200 
Pouring temperature, (Pt) D    ˚C 630 660 690 720 750 
Die temperature, (Dt)  E    ˚C 100 150 200 250 300 

 
Secondary dendrite arm spacing (SDAS) 
Micro-structure examination is carried out on the prepared 
squeeze cast specimen. The sectioned surface was initially 
grounded using belt grinder, followed by series of silicon carbide 
papers with increasing fineness. Continuous circulation of water 
was maintained during grinding. Disc polisher is used with 400 
mesh Al2O3 powder, 1000 mesh SiC powder with water and 
diamond paste with hyfin liquid to get scratch free surface of test 
specimen. The prepared samples are cleaned with soap solution 
followed by alcohol and dried. The samples are etched with 
kellers reagent (2.5% HNO3 + 1.5% HCl + 1%HF + 95%H2O) 
solution to reveal the micro-structure. The prepared samples have 
been examined using optical microscope and images of micro-
structure is recorded. Biovis image analysis software is used to 
determine the SDAS values. The linear intercept method has been 
adopted to measure the secondary dendrite arm spacing. The 
quantification of secondary dendrite arm spacing is done by 
drawing the lines measuring the distance between the adjacent 
sides on the longitudinal part of a primary dendrite as a function 
of the distance from the dendrite tip (Zeren (2005) [38]). The 
SDAS is measured by using the dendrites which possess more 
than 5 dendrite arms. The average value of the SDAS in each 
casting sample is determined at three different locations by taking 
at least to a minimum of 15 different primary dendrites containing 
more than 5 secondary dendrite arms. SDAS is measured by using 
Eq. i and Eq. ii,  
 

푋 	 =
푋
푀 																																																																																										(푖) 

 

퐴푣푒푟푎푔푒	푆퐷퐴푆 =	
1
푛

푋
푀 																																			 																										(푖푖) 

 
Where Xi is the length of the ith dendrite, n is the number of 
measurements, mi is the number of dendrite arms and ‘i’ is the 
index term of the measured dendrites. 
 
Table 2. 
Summary results of input-outputs of the test cases  

Exp. 
No 

Squeeze casting 
process parameters Response 

Td DP Sp Pt Dt SDAS, µm 
48.43 
49.74 
47.64 
33.78 
46.86 
48.33 
50.63 
44.86 
35.66 
41.34 

1 11 30 101 671 263 
2 7 14 110 635 192 
3 6 37 63 674 236 
4 5 40 142 731 254 
5 5 10 71 723 142 
6 9 33 110 738 261 
7 9 48 96 637 174 
8 11 32 172 712 189 
9 4 21 196 646 213 
10 4 23 89 742 284 

 
The micro-structures obtained for few test samples are shown in 
the Fig. 2. It is interesting note that the micro-structure of the 
squeeze cast samples shown in Fig. 2 (c) (Test case 9) yields 
lower secondary dendrite arm spacing compared to the Fig. 2 (b) 
(Test case 10) and Fig. 2. (a) (Test case 7) (refer table 2).  
 

 

(a) (b) (c) 
Fig. 2. Micro-structure of squeeze cast samples of different test cases shown in table 6, (a) Test case 7, (b) Test case 10 and (c) Test case 9 
 
This is because the dendrites are broken into small pieces due to 
the better squeeze casting conditions. This might be due to low 

time delay value (that is, molten metal with high fluidity) and the 
higher applied pressure. The liquid metal with high fluidity and 
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pressure will result in eliminating gas entrapment, improved heat 
transfer co-efficient and higher solidification rate. These results 
will yield micro-structure with smaller dendrite arm spacing 
values.  
 
 
2.1. Data collection 
 
The performance of the developed model predictions in artificial 
intelligence techniques depends on the quality and quantity of the 
training data used. In soft computing applications training has to 
be done with huge (say 500) data base and should cover all 

possible combinations of the input variable ranges. The collection 
of such data through real experiments is tedious and not feasible, 
since, it leads to large amount of material waste, labour waste and 
time consuming. It is to be noted that huge amount of training 
data has been generated at random using the response equation. 
This response equation (input-output relation) is obtained earlier 
by same authors [Refer 28]. Further, the data used to test the 
models has been collected through experiments and not used in 
training the FLC.  The non linear regression equation for 
secondary dendrite arm spacing (SDAS) expressed in terms of 
squeeze cast technical parameters is shown in Eq. [1].       

 
푆퐷퐴 = 313.45 + 3.71889푇 − 0.318161퐷 − 0.120364푆 − 0.632729푃 − 0.22336퐷 − 0.144949푇

+ 0.00238712퐷 + 0.000198798푆 + 0.000402338푃 + 0.000513454퐷 																																														(1) 
 
2.2. Fuzzy Modelling 
 
The method of identifying, analysing and establishing the input-
output relationship of the physical system is referred as 
modelling. The fuzzy concept is adopted to develop the 
relationship between squeeze cast process variables and the 
secondary dendrite arm spacing (SDAS). In the present work, 
fuzzy modelling aims at predicting the output for the known set of 

inputs. SDAS is expressed as a function of squeeze cast process 
variables. Takagi & Sugeno’s and Mamdani approach of FLC 
have been developed and used to predict the SDAS. The 
performance of the developed models is tested for both linear 
(Triangular) and non-linear (Generalized bell shape and Gaussian) 
membership function distributions with the help of 10 test cases. 
The input-output model of the squeeze casting process using 
fuzzy logic is shown in Fig.3.   

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Model representation of squeeze casting process using fuzzy interface system 
 
 
3. Fuzzy logic controller 
 
Due to rapid development in the application of fuzzy logic to 
solve complex real world problems, researcher/investigators are 
more interested to develop the fuzzy input-output relationships. 
Fuzzy concept works based on the thinking and reasoning 
capabilities of our human behaviour and the same is used to 
establish the input-output relationships of the system. Easy to 
understand and implement, capable to handle uncertainty and 
exact mathematical formulation is not required are the potential 
advantages of the fuzzy logic systems (Pratihar DK (2008)) [29]. 
Takagi Sugeno and Mamdani based models of fuzzy logic system 
(refer table 3) have been developed in the present study to model 
the squeeze casting process.   

In general fuzzy logic model performances depend on the 
knowledge base, which consists of data base and rule base. In data 
base, the membership function is decided, based on the distributed 
data of variability in the process. Triangular and trapezoidal 
membership functions are used for the linear type data 
distribution. Whereas, generalized bell shape, sigmoid, gaussian 
membership functions can be used if the data distributions are 
assumed to be non-linear. In fuzzy logic systems the variables 
need to be expressed in the form of linguistic terms such as low, 
medium, high, small, medium etc., and the input-output 
relationships are expressed as a function of linguistic terms in the 
form of rules.  It is important to note that the number of rules vary 
with linguistic terms and process variables.  
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Table 3. Fuzzy logic system modelling approaches (Azar and Taher (2010)) [30]. 
Type Linguistic fuzzy modelling Precise fuzzy modelling 
Approach Mamdani approach Takagi sugeno’s approach 
Advantage Better interpretability  High accuracy 
Limitation Low accuracy Low interpretability 
Number of parameters  Few parameters More parameters 
Number of rules Few rules More rules 

 
3.1. Approach 1:  
 
Development of manually constructed Mamdani based FLC 
In this approach, Mamdani based fuzzy logic controller (FLC) has 
been developed to carry out forward mapping of squeeze casting 
process. Squeeze cast process variables such as time delay, 
pressure duration, squeeze pressure, pouring temperature and die 
temperature are considered as the inputs and secondary dendrite 
arm spacing (SDAS) is treated as an output.  
In fuzzy systems the input and output parameters need to 
expressed in linguistic terms. In the present case, three linguistic 
terms such as low (L), medium (M) and high (H) were used to 
represent the input-output variables of the present system. For 

simplicity, triangular membership function distributions 
representing the input-output variables of the squeeze casting 
process with fuzzy logic system is shown in Fig. 3.  It is important 
to mention that squeeze casting process is complex in nature, 
since it consists of large number of parameters and the output may 
behaves linear or non-linear with respect to change in the output. 
Hence, the fuzzy logic models were developed with both linear 
and non-linear type membership function distributions.  
The ‘a’ values shown in Fig. 4 indicates the half base widths of 
isosceles triangles and the base widths of the right angled 
triangles.  

 

 
Fig. 4. Manually constructed membership function distribution for input-output variables 

 
The base width of the right angle triangular membership function 
distributions namely a1, a2, a3, a4, a5 and a6 values are kept equal 
to 4, 20, 75, 60, 100 and 18 respectively. As there are five input 

variables and each input variable is expressed using three 
linguistic terms,  the number of rules to be defined for the present 
system is found to be equal to 243 (3 × 3 × 3 × 3 × 3). The 
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manually constructed rule base of the fuzzy logic system is shown 
in Table 3. The typical rule base of the fuzzy logic system will 
looks as shown below,      
IF A is M AND B is H AND C is L AND D is H AND E is M 
THEN SDAS is M   
It is important to mention that the knowledge base of the fuzzy 
system consists of rule base as well as data base. The manually 
constructed rule base depends completely on the human expertise 
in their relative field and is not considered to be optimal always. 
Hence attempts required to automatically emulate the rule and 

data base utilizing better learning capabilities of artificial neural 
networks (ANNs). 
 
 
3.2. Approach 2: 
 
Development of adaptive network based fuzzy interface system to 
automatically retrieve the data and derive the rule base 

 

Fig. 5. Flow chart representing methodology followed for predicting density and SDAS using ANFIS 
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Artificial neural networks are excellent, cost effective modelling 
tool to map complex manufacturing processes, Parappagoudar and 
Vundavilli (2012) [17]. The reason might be due to better learning 
capabilities and generalize (forecast reasonable output for the 
inputs which are not used during the learning phase) (Hykin S. 
(2006)) [31].  Some of the ANNs limitations are precision of 
output is limited, problem with solutions getting trapped in local 
optimum , huge data that cover entire process variable range is 
required to train the network and large number of training epochs, 
Rajasekaran and Pai (2003) [32].        
The fuzzy concepts are successfully implemented to address the 
problems related to the production and operation management 
field, Wong and Lai (2011) [33]. Greater flexibility in formulating 
system and capability to handle imprecise input-output data are 
the major advantages of fuzzy logic approach. It is important to 
note that, no systematic procedure available to define the 
membership function distributions is the major limitation of the 
fuzzy logic system, Yurdusev and Firat (2009) [34]. In recent 
years research efforts were made to develop hybrid systems to 
solve complex real world problems by combining the desirable 
features of artificial neural networks and fuzzy logic tools. The 
embedded type hybrid system developed to limit the weakness of 
one of the soft computing tool with the strengths of the other. 
Adaptive neuro-fuzzy interface system (ANFIS) is one such 
hybrid system found to have some attractive features such as easy 
to implement, better generalization capabilities, fast and precise 
learning, excellent descriptions via fuzzy rules, easy to include 
both numerical and linguistic knowledge for solving complex 
problems (Azar and Taher (2010)) [30]. It is important to note that 
some of the authors successfully implemented ANFIS model and 
proved it as the cost-effective modelling tool   [35-37].      
In ANFIS, an artificial neural network with the fuzzy system is 
used to automatically evolve the rule base. It is interesting to note 
that the ANFIS works with the use of hybrid learning algorithm 
(Gradient descent and least square estimator) to map the input-
output relationships. The fuzzy rule is composed of both 
antecedent (includes membership function parameters and its 
shape) parameter and consequent (functional parameter of input 
signals which describes network output) parameters. The training 
of hybrid learning algorithm includes both forward and backward 
pass calculations. In forward computation the antecedent 
parameters are fixed initially and consequent parameters were 
identified by means of least square principle. The summation of 
outputs of consequent layer determines the network output. It is to 
be noted that the major objective of any training algorithm is to 
reduce the error (between the actual and network predicted), so 
the network parameters needs to updated and this can be 
accomplished with backward pass calculation. Later in backward 
pass calculation the consequent parameters are fixed and the 
premise parameters were updated by means of gradient descent 
method, Yurdusev and Firat (2009) [34]. The steps followed for 
the ANFIS model in the present work is shown in Fig. 5.       
 The structure of the adaptive neuro-fuzzy interface systems for 
the squeeze casting process looks is shown in the Fig. 6. The 
rectangle and circle symbols used in the network architecture 
indicate adaptive and fixed nodes respectively. Similar to artificial 
neural network architecture the network includes input, output 
and hidden layers. Squeeze cast process variables are expressed as 
a function of input nodes in the input layer, whereas secondary 

dendrite arm spacing function as an output node. The nodes 
functioning in the hidden layer includes membership function and 
the rules. In the present work there exists five inputs and one 
output parameter. Each input parameter is expressed in the form 
of three linguistic terms and the 243 possible combinations of 
rules exist. For the first-order Takagi and Sugeno’s model a 
typical output with three fuzzy rules can be expressed as shown in 
Eq. [3], [4] and [5].  
Rule 1: if (Td is A1) and (Dp is B1) and (Sp is C1) and (Pt is D1) 
and (Dt is E1) then 
 
푓 = 푝 푇 + 푞 퐷 + 푟 푆 + 푠 푃 + 푡 퐷 + 푢 								(3) 
 
Rule 2: if (Td is A2) and (Dp is B2) and (Sp is C2) and (Pt is D2) 
and (Dt is E2) then  
 
푓 = 푝 푇 + 푞 퐷 + 푟 푆 + 푠 푃 + 푡 퐷 + 푢 							(4) 
 
Rule 3: (Td is Ai) and (Dp is Bi) and (Sp is Ci) and (Pt is Di) and 
(Dt is Ei) then 
 
푓 = 푝 푇 + 푞 퐷 + 푟 푆 + 푠 푃 + 푡 퐷 + 푢 											(5) 
 
Where, i = 1, 2, 3, ..........243, pi, qi, ri, si, ti and ui are the 
consequent parameters, f is the output parameter, Ai, Bi, Ci, Di 
and Ei are the linguistic labels used to define the membership 
function.   
The adaptive network based fuzzy interface system architecture 
consists of six layers namely input layer, fuzzification layer, 
product layer, normalization layer, de-fuzzification layer and 
output layer. The systematic procedure in developing the input-
output relationship and the proper functioning of each layer is 
described as follows,    
Layer 1: In layer 1, squeeze cast process variables are expressed 
as a function of input nodes of the input layer. The layer 1 
transmits the same input values to the next corresponding layer 
using linear transformation function.   
Layer 2: The layer 2 is the fuzzification layer, in which 
membership function values are determined corresponding to the 
assigned linguistic labels shown in Eq. [6], Eq. [7], Eq. [8], Eq. 
[9] and Eq. [10]. Td, Dp, Sp, Pt and Dt are the input nodes 
expressed as membership functions in terms of Ai, Bi, Ci, Di and 
Ei of layer 2. Where O2,i is the output of ith node of layer 2.    
 
O , = μA 	(T )																		for	i = 1, 2, 3																															(6) 
 
O , = μB D 													for	i = 4, 5, 6																															(7) 
 
O , = μC S 															for	i = 7, 8, 9																															(8) 
 
O , = μD (P )																for	i = 10, 11, 12																							(9) 
 
O , = μE (D )													for	i = 13, 14, 15																					(10) 
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Triangular, generalized bell shape and gaussian are the most 
commonly used membership functions and the values always lies 
between zero and one corresponding to the input conditions.  
Layer 3: The layer 3 referred as product layer, which determines 
the number of all possible rules (35=243), 243 nodes present in the 
layer 3 and is usually labelled using the term Π. A maximum of 

32 nodes will be activated for the particular set of input conditions 
and each node represents the possible combination of input 
variables. The information from layer 2 is received and generates 
the output by multiplying all the input signals as shown in Eq. 
[11]. 
 

푂 , = 푤 	 = 	휇퐴 (푇 ) × 휇퐵 퐷 × 	휇퐶 푆 × 휇퐷 (푃 ) × 휇퐸 (퐷 )																																																							(11) 
    
 

 
 
 

 
 
 
 
 
 
 
   
    
  
 
            
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Symbol indicates adaptive node      Fixed node 

 
Fig. 6. ANFIS network architecture for predicting the response-SDAS 
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Layer 4: The layer 4 is also referred as normalization layer and 
nodes presented in that layer is usually labelled as N. The major 
function of this layer is to normalize the weight functions using 
Eq. [12]. The output calculation of ith node is the ratio of ith rule 
firing strength to the sum of all the fired rules. 
 
푂 , 	 =	푤 =	푤 (푤 + 푤 +푤 +⋯+ 푤 )⁄ 									(12) 
 
Layer 5: The fifth layer is termed as the de-fuzzification (centre 
of area method) layer and each node is calculated using the 
product of all the normalized firing strengths and the output of 
the corresponding fired rule is calculated using Eq. [13]. The 
layer 5 consists of 243 nodes and maximum of 32 nodes will be 
activated for the particular input variables combination.  
 
푂 , = 푤 푓 	푤 	 푝 푇 + 푞 퐷 + 푟 푆 + 푠 푃 + 푡 퐷 + 푢 					(13) 
 
Layer 6: The last layer is the output layer, since only one output 
variable is used for the present study only single node is present.  
The output calculation is performed using the summation of all 
the received input signals from the 5th layer shown in Eq. [14].    
  

푂 , = 	 푤 	푓 	 =	
∑ 푤 푓
∑ 푤 																																																										 (14) 

 
 
 

4. Results and discussion 
 
The performance of the developed models to predict secondary 
dendrite arm spacing in squeeze casting has been tested with the 
help of 10 test cases generated at random. The following section 
presents the information about the results obtained and 
comparison of developed model performances with 
experimental values.  
 
 
4.1. Approach 1 
 
The approach 1 deals with the manual construction of the rule 
and data base of the fuzzy logic system with the help of human 
expertise. For simplicity, linear type triangular shape 
membership function distribution is used for the present system 
and shown in Fig. 3. The base width of ‘a’ values shown in the 
triangular shape membership function distributions is same as 
explained in the earlier section.  The performance of both 
approaches has been compared. Further, for each of the 
approach comparison of performance has been made for three 
different membership function distribution. The performance 
comparison results are summarized and presented in Table 5.  
The prediction accuracy of the developed models relies majorly 
on accurate construction of the rule base defined with the 
knowledge of human expertise. The developed manually 
constructed rule base to predict the secondary dendrite arm 
spacing is presented in Table 4.       

  
Table 4. 
Manually constructed rule base of the fuzzy logic system 

Rule 
No. A B C D E SDAS, µm Rule 

No. A B C D E SDAS, µm Rule 
No. A B C D E SDAS, µm 

1 L L L L L H 82 M L L L L H 163 H L L L L H 
2 L L L L M M 83 M L L L M H 164 H L L L M H 
3 L L L L H M 84 M L L L H H 165 H L L L H H 
4 L L L M L M 85 M L L M L H 166 H L L M L H 
5 L L L M M M 86 M L L M M M 167 H L L M M H 
6 L L L M H M 87 M L L M H M 168 H L L M H H 
7 L L L H L M 88 M L L H L M 169 H L L H L H 
8 L L L H M M 89 M L L H M M 170 H L L H M M 
9 L L L H H M 90 M L L H H M 171 H L L H H H 
10 L L M L L M 91 M L M L L H 172 H L M L L H 
11 L L M L M M 92 M L M L M M 173 H L M L M H 
12 L L M L H M 93 M L M L H M 174 H L M L H H 
13 L L M M L M 94 M L M M L M 175 H L M M L H 
14 L L M M M M 95 M L M M M M 176 H L M M M M 
15 L L M M H M 96 M L M M H M 177 H L M M H M 
16 L L M H L M 97 M L M H L M 178 H L M H L M 
17 L L M H M M 98 M L M H M M 179 H L M H M M 
18 L L M H H M 99 M L M H H M 180 H L M H H M 
19 L L H L L M 100 M L H L L M 181 H L H L L H 
20 L L H L M M 101 M L H L M M 182 H L H L M M 
21 L L H L H M 102 M L H L H M 183 H L H L H M 
22 L L H M L L 103 M L H M L M 184 H L H M L M 
23 L L H M M M 104 M L H M M M 185 H L H M M M 
24 L L H M H M 105 M L H M H M 186 H L H M H M 
25 L L H H L L 106 M L H H L M 187 H L H H L M 
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26 L L H H M L 107 M L H H M M 188 H L H H M M 
27 L L H H H M 108 M L H H H M 189 H L H H H M 
28 L M L L L M 109 M M L L L H 190 H M L L L H 
29 L M L L M M 110 M M L L M M 191 H M L L M H 
30 L M L L H M 111 M M L L H H 192 H M L L H H 
31 L M L M L M 112 M M L M L M 193 H M L M L H 
32 L M L M M M 113 M M L M M M 194 H M L M M M 
33 L M L M H M 114 M M L M H M 195 H M L M H H 
34 L M L H L M 115 M M L H L M 196 H M L H L H 
35 L M L H M M 116 M M L H M M 197 H M L H M M 
36 L M L H H M 117 M M L H H M 198 H M L H H M 
37 L M M L L M 118 M M M L L M 199 H M M L L H 
38 L M M L M M 119 M M M L M M 200 H M M L M M 
39 L M M L H M 120 M M M L H M 201 H M M L H H 
40 L M M M L M 121 M M M M L M 202 H M M M L M 
41 L M M M M L 122 M M M M M M 203 H M M M M M 
42 L M M M H M 123 M M M M H M 204 H M M M H M 
43 L M M H L M 124 M M M H L M 205 H M M H L M 
44 L M M H M L 125 M M M H M M 206 H M M H M M 
45 L M M H H L 126 M M M H H M 207 H M M H H M 
46 L M H L L M 127 M M H L L M 208 H M H L L M 
47 L M H L M M 128 M M H L M M 209 H M H L M M 
48 L M H L H M 129 M M H L H M 210 H M H L H M 
49 L M H M L M 130 M M H M L M 211 H M H M L M 
50 L M H M M L 131 M M H M M M 212 H M H M M M 
51 L M H M H L 132 M M H M H M 213 H M H M H M 
52 L M H H L L 133 M M H H L M 214 H M H H L M 
53 L M H H M L 134 M M H H M L 215 H M H H M M 
54 L M H H H L 135 M M H H H M 216 H M H H H M 
55 L H L L L M 136 M H L L L H 217 H H L L L H 
56 L H L L M M 137 M H L L M M 218 H H L L M H 
57 L H L L H M 138 M H L L H M 219 H H L L H H 
58 L H L M L M 139 M H L M L M 220 H H L M L H 
59 L H L M M M 140 M H L M M M 221 H H L M M M 
60 L H L M H M 141 M H L M H M 222 H H L M H M 
61 L H L H L M 142 M H L H L M 223 H H L H L M 
62 L H L H M L 143 M H L H M M 224 H H L H M M 
63 L H L H H M 144 M H L H H M 225 H H L H H M 
64 L H M L L M 145 M H M L L M 226 H H M L L M 
65 L H M L M M 146 M H M L M M 227 H H M L M M 
66 L H M L H M 147 M H M L H M 228 H H M L H M 
67 L H M M L M 148 M H M M L M 229 H H M M L M 
68 L H M M M L 149 M H M M M M 230 H H M M M M 
69 L H M M H L 150 M H M M H M 231 H H M M H M 
70 L H M H L L 151 M H M H L M 232 H H M H L M 
71 L H M H M L 152 M H M H M M 233 H H M H M M 
72 L H M H H L 153 M H M H H M 234 H H M H H M 
73 L H H L L M 154 M H H L L M 235 H H H L L M 
74 L H H L M L 155 M H H L M M 236 H H H L M M 
75 L H H L H L 156 M H H L H M 237 H H H L H M 
76 L H H M L L 157 M H H M L M 238 H H H M L M 
77 L H H M M L 158 M H H M M M 239 H H H M M M 
78 L H H M H L 159 M H H M H M 240 H H H M H M 
79 L H H H L L 160 M H H H L M 241 H H H H L M 
80 L H H H M L 161 M H H H M L 242 H H H H M M 
81 L H H H H L 162 M H H H H L 243 H H H H H M 
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4.2. Approach 2 
 
The steps followed to predict the secondary dendrite arm spacing 
(SDAS) using ANFIS model is shown in the Fig. 4. It is to be 
noted that huge amount of training data (say 500) is generated 
artificially at random by utilizingthe response equation, obtained 
earlier by the same authors.  Five input parameter (time delay, 
squeeze pressure, pressure duration, pouring temperature and die 
temperature) and single output (SDAS) parameter have been 
considered to develop input-output relationship in squeeze casting 

using ANFIS model and is shown schematically in Fig. 5. As 
explained in the previous sections both linear (triangular) and 
non-linear (generalized bell shape and gaussian) type membership 
function distributions have been used and the prediction 
performance of the developed models are compared with ten 
different test cases. The test results are summarized in Table 5. 
The input-output values of ten different squeeze casting 
conditions (that is test cases, collected through experiments) are 
presented in Table 6.  

(a)  (b)

(c) 
Fig. 7. Convergence of ANFIS training (RMSE v/s Number of training epoch) for response-SDAS; (a) Triangular membership function, 

(b) Generalized bell shape membership function  and (c) Gaussian membership function distribution 
 
It is of paramount importance to note that the prediction accuracy 
of the developed models rely on the closeness of the predicted and 
the actual values during training and is usually measured using 
root mean squared error (RMSE). The root mean squared error 
obtained at the end of the training for different membership 
function distributions for the response secondary dendrite arm 
spacing is shown in Fig. 7.  
 
 
4.3. Comparison of the developed models  
 
The performance of developed models (that is Approach1 and 
Approach 2 with different membership distribution functions) has 
been compared with the help of test cases. The results are 
summarized in Table 5.   

4.3.1. Approach 1 
 
It is interesting to note that the prediction of triangular 
membership function distribution shown in Fig. 8 (a) are close to 
the ideal line as compared with Fig. 8 (b) of generalized bell 
shape and Fig. 8 (c) of gaussian membership function 
distributions respectively. The summary results of the test cases in 
predicting the SDAS is presented in Table. 2. However, the 
accuracy and prediction capability of the developed model 
performances are evaluated based on mean absolute percentage 
error (Refer Eq. [15]). 8.911, 8.888 and 9.408 are the values of 
mean absolute percentage deviation obtained in predicting the 
SDAS for triangular, generalized bell shape and gaussian 
membership function distribution respectively and the same is  
presented in Table 5. 
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 (a) (b) 

(c) 
Fig. 8. Comparison of predicted and actual SDAS via approach 1, (a) Triangular membership function distributions, (b) Bell shape 

membership function distributions and (c) Gaussian membership function distributions 
 
The mean absolute percent error is obtained by using the 
following equation: 
 

푀퐴푃퐸 =	
1
푛

푂 − 푃
푂 																																																					(15) 

 
Where P is the predicted, n is the number of data sets and O is the 
observed values. 
 
 
4.3.2. Approach 2 
 
In approach 2, ANNs receives fuzzy inputs, processes it and 
extracts fuzzy outputs. The function of artificial neural networks 
in this approach is to automatically define the structure, tune the 

fuzzy parameters, rule base, data base and membership function 
distributions. The performance of the developed models can be 
further enhanced by utilizing different membership function 
distributions [26 and 27]. It is also important to note that 
performance of the developed models also rely on the quantity 
and quality of the training data, degree of closeness with actual 
and network predicted values and is usually determined using the 
root mean squared error at the end of the training. Five hundred 
set of input-output data is used for training and the network 
training was terminated with the error reaching steady state.  The 
RMSE values obtained at the end of the training for triangular, 
generalized bell shape and gaussian membership function 
distributions are found to be equal to 0.1328,0.2512 and 0.2734 
respectively (Refer Fig. 6).  The adjusted ‘a’ values of six 
variables for different membership function distributions are 
presented in Table 5 

 
Table 5.  
The optimized or adjusted ‘a’ values of fuzzy parameters 

Membership function  
distributions 

Half base width of right angled triangle 
a1 a2 a3 a4 a5 a6 

Triangular 3.7786 19.3613 74.8241 59.3171 98.9814 18.2993 
Generalized bell  3.4442 19.6671 74.8939 60.0567 100.1465 18.2993 
Gaussian 3.8413 19.4823 74.8434 59.8642 99.1276 18.2993 
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The developed models performance is compared with the help of 
few experimental test cases and shown in Fig. 8. The best fit line 
is used to compare the model predicted and the actual values of 
SDAS. It is interesting to note that the best fit line of all the 
models looks similar. However, the triangular membership 
function shown in Fig. 9 (a) performs slightly better in 
comparison with Fig. 9 (b) of generalized bell shape and Fig. 9(c) 
of gaussian membership function distributions. It is also important 
to observe that majority of the data points of triangular shape 

membership function of the fuzzy logic system falls close to the 
ideal line compared to rest. The summary result of the test cases 
for secondary dendrite arm spacing prediction is presented in the 
Table 6. Moreover the developed model performances are 
evaluated by means of MAPE values for 10 different test cases. 
The mean absolute percent error values for triangular, generalized 
and Gaussian membership function distribution are found to be 
equal to 4.571, 5.298 and 5.422 respectively (Refer Table 5). 

 
Table 6. 
Summary results of test cases of fuzzy models for the response SDAS 

Test  
case 
no 

Actual 
SDAS, 

µm 

Approach 1 Approach 2 

Triangular G bell shape Gaussian Triangular G bell shape Gaussian 

Predict
ed 

Abs.% 
deviatio

n 

Predi
cted 

Abs.% 
deviatio

n 

Predic
ted 

Abs. 
deviati

on 

Predi
cted 

Abs.% 
deviati

on 

Predi
cted 

Abs. % 
deviatio

n 

Predi
cted 

Abs. % 
deviatio

n 
1 48.43 46.96 3.035 46.08 4.852 46.20 4.605 53.11 9.663 52.64 8.693 52.71 8.837 
2 49.74 46.38 6.755 46.00 7.519 46.01 7.499 53.53 7.620 54.07 8.705 53.36 7.278 
3 47.64 46.37 2.666 46.02 3.401 45.99 3.463 47.85 0.441 47.74 0.210 47.62 0.042 
4 33.78 43.77 29.574 43.05 27.442 43.69 29.34 33.89 0.326 35.69 5.654 32.43 3.996 
5 46.86 47.91 2.241 47.44 1.238 47.55 1.472 49.44 5.506 49.24 5.079 49.42 5.463 
6 48.33 46.48 3.836 46.00 4.829 46.01 4.808 45.79 5.263 45.76 5.325 45.56 5.739 
7 50.63 47.50 6.182 46.37 8.414 46.56 8.039 52.62 3.930 52.58 3.851 52.51 3.713 
8 44.86 46.00 2.541 46.00 2.541 46.00 2.541 42.75 4.704 43.55 2.920 42.02 6.331 
9 35.66 45.24 26.865 45.64 27.987 45.88 28.660 38.32 7.459 39.59 11.021 39.49 10.740 
10 41.34 43.58 5.418 41.07 0.653 42.85 3.653 41.01 0.798 40.71 1.524 40.48 2.080 

MAPE  8.911  8.888  9.408  4.571  5.298  5.422 
 

(a)   (b)

(c) 
Fig. 9. Comparison of predicted and actual SDAS values using approach 2; (a) Triangular membership function, (b) Bell shape 

membership function and (c) Gaussian membership function distribution 
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4.4. Comparison of the developed approaches 
using percent deviations 
 
The variation in predicting the SDAS for approach 1 and 
approach 2 is shown in Fig. 10 (a) and Fig. 10 (b) respectively.  
The percent deviation in predicting SDAS values  for both the 
approaches using triangular membership function distribution is 
found to  lie in the range of (-29.574%, +6.755%) for approach 1 
and (-9.664%, +5.263%) for approach 2.  Similarly, for 

generalized bell shape and gaussian membership function 
distribution the percent deviation in prediction values are found to 
vary in the range of (-27.987%, +8.414%), (-29.337%, +8.0387%) 
for approach 1 and (-11.208%, +5.325%), (-10.740%, +5.739%)  
for approach 2  (Refer Figs. 10). It is interesting to note that the 
percent deviation pattern is found to be similar for all three 
models (that is, approach 1 with different membership function 
distributions, Refer Fig. 10 (a)).  

 

(a) 

(b) 
Fig. 10. Comparison of different approaches of the developed models with different membership function distribution in terms of percent 
deviation in prediction for the response-SDAS, (a) Manually constructed fuzzy logic system and (b) Adaptive network based fuzzy logic 

system 
 
4.5. Comparison of the developed approaches 
using average absolute percent deviation 
 
The prediction ability of the developed approaches, with three 
different membership function distributions have been evaluated 
using mean absolute percent error and shown in Fig. 11. It is also 
important to note that prediction of approach 2 would show 
slightly better performance as compared with approach 1. 

However, it is has been observed that the performance of the 
approach 2 also varies with linear and non-linear type 
membership function distributions, the reason might be due to the 
nature of error surface during training. The improved performance 
of approach 2 might be due to the automatic evolution of 
antecedent and consequent parts of fuzzy logic system utilizing 
huge training data through better learning capabilities of artificial 
neural networks. On the other hand, the antecedent and the 
consequent parts of the fuzzy logic system developed in approach 
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1 is with the help of human expertise and are not considered to be 
optimal always. It is important to note that the generalized bell 
shape of approach 1 and triangular shape membership function of 
approach 2 perform better compared to other membership 

function distributions. Moreover, the triangular shape membership 
function distributions of approach 2 outperforms all other models 
in terms of mean absolute percent error as shown in Fig. 11          

 

 
Fig. 11. Comparison of different model performances in terms of average absolute percent deviation in prediction for the responses-

Secondary dendrite arm spacing 
 

5. Concluding remarks 
 
An attempt has been made to carry out the forward mapping to 
predict the secondary dendrite arm spacing using Mamdani model 
and Takagi Sugeno model (ANFIS) of the fuzzy logic based 
approaches. It is  to be noted that antecedent and the consequent 
parts of the fuzzy logic system is designed based on the human 
expertise for Mamdani model, whereas, for Takagi and Sugenos 
model the antecedent and consequent parts are automatically 
evolved by utilizing huge training data with the better learning 
capabilities of artificial neural networks. Batch mode of training 
has been employed, with huge training data (say 500) base for 
better training and accurate prediction. Huge data base collection 
through real experiments is impractical to achieve and are 
generated artificially at random using response equation obtained 
through real experiments. Ten different test cases generated at 
random were used to compare the performance of the developed 
approaches with both linear and non-linear type membership 
function distributions. It is also important to note that the test data 
collected through real experiments are not used during the 
learning phase of the ANFIS system. It is interesting to note that 
generalized bell shape membership function of approach 1 and 
triangular membership of approach 2 made better predictions. 
Moreover the approach 2 prediction performed better compared to 
approach 1 in the present case. The improved prediction 
performance of approach 2 depends mainly on the quality and 
quantity of the data used for training, membership function 
distributions and the nature of the error surface. In addition the 
prediction performance of also depends on the linear or non-linear 
behaviour of the response. It is interesting to note that all models 
with different membership function distributions of the fuzzy 
logic based approaches are capable of making prediction for 

SDAS values in squeeze casting.  It is also important to mention 
that the approach 1 predictions can be further enhanced with 
increasing the number of linguistic terms, which will increase the 
number of rules and computational complexity. The developed 
fuzzy logic models can be effectively used for making predictions 
of secondary dendrite arm spacing at different squeeze casting 
conditions and eliminate the need of extensive experimental work. 
The present work is of paramount importance for the foundry men 
for the selection of most influential parameters to achieve the 
desired casting quality in squeeze casting process.  
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