PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Spatial motion of the aircraft manoeuvring to avoid moving obstacle

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, mathematical relationships which are used to describe kinematic variables of the aircraft-obstacles configuration and motion of the aircraft are presented. These define the base for the set of conditions enabling determination of the possibility and threat of collision. The second important aim of such a definition is creation of prerequisites for selection of an appropriate anti-collision manoeuvre, computation of reference signals and inequalities used as limitations on these signals in the automatic flight control process. Theoretical analysis is illustrated by an example of computer simulation of the flight of aircraft. Two anti- -collision manoeuvres are studied in this experiment. The first one, performed in a vertical plane, consists in emergency climbing. The second one, performed in the horizontal plane, is shaped by three turns, each one of small radius, to go around the obstacle and then return to the previously realised flight path.
Rocznik
Strony
99--111
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Institute of Aviation, Centre of Space Technologies Department, Warsaw, Poland
Bibliografia
  • 1. Ariyur K.B., Lommel P., Enns D.F., 2005, Reactive in flight obstacle avoidance via radar feedback, American Control Conference, Portland, 2978-2982
  • 2. Becker M., Dantas C., Macedo W.P., 2006, Obstacle avoidance procedure for mobile robots, International Congress of Mechanical Engineering, Ouro Preto, 250-257
  • 3. Benayas J.A., Fernandez J.L., Sanz R., Dieguez A.R., 2002, The beam-curvature method: a new approach for improving local real time obstacle avoidance, The International Federation of Automatic Control, Barcelona
  • 4. Blajer W., Graffstein J., 2012, Anti-collision manoeuvre in programmed motion theory context (in Polish), [In:] Mechanika w Lotnictwie, ML-XV 2012, K. Sibilski (Ed.), PTMTS, Warszawa, 597-613
  • 5. Carbone C., Ciniglio U., Corraro F., Luongo S., 2006, A novel 3D geometric algorithm for aircraft autonomous collision avoidance, IEEE Conference on Decision and Control, San Diego, 1580-1585
  • 6. Choi H., Kim T.Y., 2013, Reactive collision avoidance of unmanned aerial vehicles using a single vision sensor, Journal of Guidance, Control, and Dynamics, 36, 4, 1234-1240
  • 7. Fasano G., Forlenza L., Accardo D., Moccia A., 2010, Integrated obstacle detection system based on radar and optical sensors, AIAA Infotech and Aerospace Conference, Atlanta, 1-17
  • 8. Freeman P., Moosbrugger P., 2010, A low cost phased array solution for UAV collision avoidance, AIAA Infotech and Aerospace Conference, Atlanta, 1-4
  • 9. Graffstein J., 2006, Changes in automatically controlled object motion caused by selected perturbations (in Polish), [In:] Mechanika w Lotnictwie, ML-XII 2006, J. Maryniak (Ed.), PTMTS, Warszawa, 103-119
  • 10. Graffstein J., 2012a, Anti-collision manoeuvre: process and parameters selection (in Polish), Transaction of the Institute of Aviation, 224, 32-45
  • 11. Graffstein J., 2012b, Elements of collision threat detection process and automatically controlled emergency manoeuvre (in Polish), Measurements, Automation, Robotics, 2, 383-387
  • 12. Higuchi T., Toratani D., Ueno S., 2012, Double tetrahedron hexa-rotorcraft collision avoidance of indoor flying, International Congress of the Aeronautical Sciences ICAS, 1-7
  • 13. Koruba Z., Chatys R., 2005, Gyroscope-based control and stabilization of unmanned aerial mini-vehicle (mini-UAV), Aviation, 9, 10-16
  • 14. Lalish E., Morgansen K.A., Tsukamaki T., 2009, Decentralized reactive collision avoidance for multiple unicycle-type vehicles, American Control Conference, Seattle, 5055-5061
  • 15. Ładyżyńska-Kozdraś E., 2009, The control laws having a form of kinematic relations between deviations in the automatic control of a flying object, Journal of Theoretical and Applied Mechanics, 47, 2, 363-381
  • 16. Maryniak J., 1987, The system of airplane flight simulation for homing and air combat (in Polish), Journal of Theoretical and Applied Mechanics, 25, 1/2, 189-214.
  • 17. Maryniak J., 1992, General mathematical model of controlled aircraft (in Polish), [In:] Mechanika w Lotnictwie, J. Maryniak (Ed.), PTMTS, Warszawa, 575-592
  • 18. Paielli R.A., 2003, Modeling maneuver dynamics in air traffic conflict resolution, Journal of Guidance, Control, and Dynamics, 26, 3, 407-415
  • 19. Park J.-W., Kim J.-H., Tahk M.-J., 2012, UAV collision avoidance via optimal trajectory generation method, International Congress of the Aeronautical Sciences ICAS, Brisbane, 1-7
  • 20. Phillips W.F., 2010, Mechanics of Flight, John Willey & Sons, Inc.
  • 21. Schøler F., la Cour-Harbo A., Bisgaard M., 2009, Collision Free path generation in 3D with turning and pitch radius constraints for aerial vehicles, AIAA Guidance, Navigation, and Control Conference, Chicago, 1-11
  • 22. Seo J., Kim Y., Tsourdos A., White B.A., 2012, Multiple UAV formation reconfiguration with collision avoidance guidance via differential geometry concept, International Congress of the Aeronautical Sciences ICAS, Brisbane, 1-8
  • 23. Smith A.L., Harmon F.G., 2009, UAS collision avoidance algorithm minimizing impact on route surveillance, AIAA Guidance, Navigation, and Control Conference, Chicago, 1-20
  • 24. Thipphavong D., 2009, Analysis of a multi-trajectory conflict detection algorithm, for climbing flights, AIAA Aviation Technology, Integration, and Operations Conference, Hilton Head, 1-13
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d968a681-be26-4eea-bb44-07c0236aa37d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.