Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Breast cancer remains a major global health challenge and the accurate classification of histopathological samples into benign and malignant categories is critical for effective diagnosis and treatment planning. This study offers a comparative analysis of two state-of-the-art deep learning architectures, Vision Transformer (ViT) and ConvNeXT for breast cancer histopathology image classification, focusing on the impact of data preparation strategies. Using the BreakHis benchmark dataset, we investigated six distinct preprocessing approaches, including image resizing, patch-based techniques, and cellular content filtering, applied across four magnification levels (40×, 100×, 200×, and 400×). Both models were fine-tuned and evaluated using multiple performance metrics: accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve (AUC). The results highlight the critical influence of data preparation on model performance. ViT achieved its highest accuracy of 95.6% and an F1 score of 96.8% at 40× magnification with randomly generated patches. ConvNeXT demonstrated strong robustness across scenarios, attaining a precision of 98.5% at 100× magnification using non-overlapping patches. These findings emphasize the importance of customized data preprocessing and informed model selection in improving diagnostic accuracy. Optimizing both architectural design and data handling is essential to enhancing the reliability of automated histopathological analysis and supporting clinical decision-making.
Rocznik
Tom
Strony
329--339
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Doctoral School of Exact and Technical Sciences, University of Zielona Góra, al. Wojska Polskiego 69, 65-762 Zielona Góra, Poland
autor
- Institute of Control and Computation Engineering, University of Zielona Góra, ul. Szafrana 2, 65-516 Zielona Góra, Poland
autor
- Institute of Control and Computation Engineering, University of Zielona Góra, ul. Szafrana 2, 65-516 Zielona Góra, Poland
Bibliografia
- [1] Ara, R. K., Matiolanski, A., Grega, M., Dziech, A. and Baran, R. (2023). Efficient face detection based crowd density estimation using convolutional neural networks and an improved sliding window strategy, International Journal of Applied Mathematics and Computer Science 33(1): 7-20,k DOI: 10.34768/amcs-2023-0001.
- [2] Campanella, G., Hanna, M.G., Geneslaw, L., Miraflor, A., Silva, V.W.K., Busam, K.J., Brogi, E., Reuter, V.E., Klimstra, D.S. and Fuchs, T.J. (2019). Clinical-grade computational pathology using weakly supervised deep learning on whole slide images, Nature Medicine 25(8): 1301-1309, DOI: 10.1038/s41591-019-0508-1.
- [3] Deininger, L., Stimpel, B., Yuce, A., Abbasi-Sureshjani, S., Schönenberger, S., Ocampo, P., Korski, K. and Gaire, F. (2022). A comparative study between vision transformers and cnns in digital pathology, arXiv: 2206.00389.
- [4] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021). An image is worth 16 × 16 words: Transformers for image recognition at scale, Proceedings of the 9th International Conference on Learning Representations, ICLR 2021, Vienna, Austria.
- [5] Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Jégou, H. and Douze, M. (2021). LeViT: A vision transformer in ConvNET’s clothing for faster inference, Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, Canada, pp. 12259-12269, DOI: 10.1109/ICCV48922.2021.01204.
- [6] He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, pp. 770-778, DOI: 10.1109/CVPR.2016.90.
- [7] Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K.Q. (2017). Densely connected convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, pp. 4700-4708, DOI: 10.1109/CVPR.2017.243.
- [8] Komura, D. and Ishikawa, S. (2018). Machine learning methods for histopathological image analysis, Computational and Structural Biotechnology Journal 16: 34-42, DOI: 10.1016/j.csbj.2018.01.001.
- [9] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks, in F. Pereira et al. (Eds), Proceedings of the 26th Annual Conference on Neural Information Processing Systems, NIPS 2012, Curran Associates, Inc., Lake Tahoe, NV, USA, pp. 1106-1114.
- [10] Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T. and Xie, S. (2022). A ConvNet for the 2020s, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, pp. 11966-11976, DOI: 10.1109/CVPR52688.2022.01167.
- [11] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition, Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA. DOI: 10.48550/arXiv.1409.1556.
- [12] Spanhol, F.A., Oliveira, L.S., Petitjean, C. and Heutte, L. (2016). A dataset for breast cancer histopathological image classification, IEEE Transactions on Biomedical Engineering 63(7): 1455-1462, DOI: 10.1109/TBME.2015.2496264.
- [13] Takahashi, S., Sakaguchi, Y., Kouno, N., Takasawa, K., Ishizu, K., Akagi, Y., Aoyama, R., Teraya, N., Bolatkan, A., Shinkai, N., Machino, H., Kobayashi, K., Asada, K., Komatsu, M., Kaneko, S., Sugiyama, M. and Hamamoto, R. (2024). Comparison of vision transformers and convolutional neural networks in medical image analysis: A systematic review, Journal of Medical Systems 48(84): 1-22, DOI: 10.1007/s10916-024-02105-8.
- [14] Tellez, D., Litjens, G., Bándi, P., Bulten, W., Maksai, A., Ciompi, F. and van der Laak, J. (2019). Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology, Medical Image Analysis 58: 101544, DOI: 10.1016/J.MEDIA.2019.101544.
- [15] Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Huang, J., Yang, W. and Han, X. (2021). Transpath: Transformer-based self-supervised learning for histopathological image classification, in M. de Bruijne et al. (Eds), Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021, Springer, Cham , pp. 186-195. DOI: 10.1007/978-3-030-87237-3_18.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9669911-116e-4dbe-a87b-cc186f59d2e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.