PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient method for Knoevenagel condensation in aqueous solution of amino acid ionic liquids (AAILs)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work reports on the use of the amino acid ionic liquids (AAILs) which have been used as catalysts in Knoevenagel condensation of various aldehydes with malononitrile. For research we use tetrabutylammonium ionic liquids based on eight natural amino acids. The reaction was carried out in an aqueous medium. Using water as solvent provided efficient and simple method of isolation of pure product with high yield. Moreover, amino acid ionic liquid dissolved in water could be reused many times without any loss of its catalytic activity. The influence of the anion was studied. Moreover the effect of technological parameters such as: the temperature, the catalyst content, and the reaction time on yield of reaction were investigated.
Rocznik
Strony
90--95
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Department of Inorganic and Analytical Chemistry, al. Piastów 42, 70-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. March, J. (1992). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (7th ed.). New York, USA: John Wiley & Sons.
  • 2. Song, A., Wang, X. & Lam, K.S. (2003). A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Lett. 44(9), 1755–1758. DOI:10.1016/S0040-4039(03)00108-4.
  • 3. Bigi, F., Chesini, L., Maggi, R. & Sartori, G.J. (1999). Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids. J. Org. Chem. 64(3), 1033–1035. DOI: 10.1021/jo981794r.
  • 4. Flachsmann, F. (2013). Fragrance compounds. U.S. Patent No. 8575386B2. Duebendorf C.H.: United States Patent Application.
  • 5. Hoshino, M., Sugiyama, M., Kawamata, A., Joukura, H. & Imokawa, G. 1994. Naphtalenmethylenemalonic diesters and UV absorbers and cosmetic compositions containing the diesters. EU Pat. EP 663206A1.
  • 6. Beutler, U., Fuenfschilling, P.C. & Steinkemper, A. (2007). An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part II. Org. Process Res. Dev. 11(3), 341–343. DOI: 10.1021/op060244p.
  • 7. Martinez, C.A., Hu, S., Dumond, Y., Tao, J., Kelleher, P. & Tully, L. (2008). Development of a chemoenzymatic manufacturing process for pregabalin. Org. Process Res. Dev. 12(3), 392–398. DOI: 10.1021/op7002248.
  • 8. Walker, S.D., Borths, C.J., DiVirgilio, E., Huang, L., Liu, P., Morrison, H., Sugi, K., Tanaka, M., Woo, J.C.S. & Faul, M.M. (2011). Development of a scalable synthesis of a GPR40 receptor agonist. Org. Process Res. Dev. 15(3), 570–580. DOI: 10.1021/op1003055.
  • 9. Menegatti, R. (2012). Designing highly efficient solvents for the Knoevenagel condensation: two novel dicationic dimethyl phosphate ionic liquids. In: M. Kidwai & N.K. Mishra (Eds.), Green Chemistry – Environmentally Benign Approaches (pp. 13–32). Intech, Rijeka.
  • 10. Anastas, P.T. & Warner, J.C. (1998). Green Chemistry: Theory and Practice (1st ed.). Oxford University Press, New York.
  • 11. Anastas, P.T. & Kirchhoff, M.M. (2002). Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35(9), 686–694. DOI: 10.1021/ar010065m.
  • 12. Reddy, T.I. & Verma, R.S. (1997). Rare earth-exchanged NaY zeolite-promoted Knoevenagel condensation. Tetrahedron Lett. 38(10), 1721–1724. DOI: 10.1016/S0040-4039(97)00180-9.
  • 13. McCluskey, A., Robinson, P.J., Hill, T., Scott, J.L. & Edwards, J.K. (2002). Green chemistry approaches to the Knoevenagel condensation: comparison of ethanol, water and solvent free (dry grind) approaches. Tetrahedron Lett. 43(17), 3117–3120. DOI: 10.1016/S0040-4039(02)00480-X.
  • 14. Bigi, F., Conforti, M.L., Maggi, R., Piccinno, A. & Sartori, G. (2000). Clean Synthesis in Water: Uncatalysed Preparation of Ylidenemalononitriles. Green Chem. 2, 101–103. DOI: 10.1039/B001246G.
  • 15. Gomes, M.N., de Oliveira, C.M.A., Garrote, C.F.D., de Oliveira, V. & Menegatti, R. (2011). Condensation of ethyl cyanoacetate with aromatic aldehydes in water, catalyzed by morpholine. Synth. Commun. 41(1), 52–57. DOI: 10.1080/00397910903531771.
  • 16. Mallouk, S., Bougrin, K., Laghzizil, A. & Benhida, R. (2010). Microwave-Assisted and Efficient Solvent-free Knoevenagel Condensation. A Sustainable Protocol Using Porous Calcium Hydroxyapatite as Catalyst. Molecules 15(2), 813–823. DOI: 10.3390/molecules15020813.
  • 17. Tahmassebi, D., Wilson, L.J.A. & Kieser, J.M. (2009). Knoevenagel Condensation of Aldehydes with Meldrum’s Acid in Ionic Liquids. Synth. Commun. 39(14), 2605–2613. DOI: 10.1080/00397910802663345.
  • 18. Otaibi, A.A., Gordon, C.P., Gilbert, J., Sakoff, J.A. & McCluskey, A. (2014), The influence of ionic liquids on the Knoevenagel condensation of 1H-pyrrole-2-carbaldehyde with phenyl acetonitriles – cytotoxic 3-substituted-(1H-pyrrol-2-yl)acrylonitriles. RSC Adv. 4, 19806–19813. DOI: 10.1039/c3ra47418f.
  • 19. Morrison, D.W., Forbes, D.C. & Davis, Jr J.H. (2001). Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett. 42(35), 6053–6055. DOI: 10.1016/S0040-4039(01)01228-X.
  • 20. Suresh, J. & Sandhu, J. (2013). Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac]. Org. Med. Chem. Lett. 3:(2), 1–6. DOI: 10.1186/2191-2858-3-2.
  • 21. Moosavi-Zare, A.R., Zolfigol, M.A., Khaledian, O., Khakyzadeh, V., Farahani, M.D. & Kruger, H.G. (2014). Tandem Knoevenagel-Michael-cyclocondensation reactions of malononitrile, various aldehydes and dimedone using acetic acid functionalized ionic liquid. New J. Chem. 38, 2342–2347. DOI: 10.1039/C3NJ01509B.
  • 22. Zhang, J., Zhang, Y. & Zhou, Z. (2014). Hydroxyl ammonium ionic liquid-catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinediones under solvent-free conditions. Green Chem. Lett. Rev. 7(1), 90–94. DOI: 10.1080/17518253.2014.895866.
  • 23. Ying, A., Ni, Y., Xu, S., Liu, S., Yang, J. & Li, R. (2014). Novel DABCO Based Ionic Liquids: Green and Efficient Catalysts with Dual Catalytic Roles for Aqueous Knoevenagel Condensation. Ind. Eng. Chem. Res. 53(14), 5678–5682. DOI: 10.1021/ie500440w.
  • 24. Zhao, S., Wang, X. & Zhang, L. (2013). Rapid and efficient Knoevenagel condensation catalyzed by a novel protic ionic liquid under ultrasonic irradiation. RSC Adv. 3, 11691–11696. DOI: 10.1039/C3RA40809D.
  • 25. Tzani, A., Douka, A., Papadopoulos, A., Pavlatou, E.A., Voutsas, E. & Detsi, A. (2013). Synthesis of Biscoumarins Using Recyclable and Biodegradable Task-Specific Ionic Liquids. ACS Sustainable Chem. Eng. 1(9), 1180–1185. DOI: 10.1021/sc4001093.
  • 26. Siddiqui, Z.N. & Khan, K. (2014). [Et3NH][HSO4]-Catalyzed Efficient, Eco-Friendly, and Sustainable Synthesis of Quinoline Derivatives via Knoevenagel Condensation. ACS Sustainable Chem. Eng. 2(5), 1187–1194. DOI: 10.1021/sc500023q.
  • 27. Hu, X., Zhang, B., Gao, Y. & Dong, S. (2014). Knoevenagel reactions catalyzed by ionic liquids. J. Chem. Pharm. Res. 6, 864–868. CODEN:JCPRC5 ISSN:0975-7384.
  • 28. Zicmanis, A. & Anteina, L. (2014). Dialkylimidazolium dimethyl phosphates as solvents and catalysts for the Knoevenagel condensation reaction. Tetrahedron Lett. 55(12), 2027–2028. DOI: 10.1016/j.tetlet.2014.02.035.
  • 29. Moriel, P., Garcia-Suarez, E.J., Martinez, M., Garcia, A.B., Montes-Moran, M.A., Calvino-Casilda, V. & Banares, M.A. (2010). Synthesis, characterization, and catalytic activity of ionic liquids based on biosources. Tetrahedron Lett. 51(37) 4877–4881. DOI: 10.1016/j.tetlet.2010.07.060.
  • 30. Ouyang, F., Zhou, Y., Li, Z.M., Hu, N. & Tao, D.J. (2014). Tetrabutylphosphonium amino acid ionic liquids as efficient catalysts for solvent-free Knoevenagel condensation reactions. Korean J. Chem. Eng. 31(8), 1377–1383. DOI: 10.1007/s11814-014-0077-4.
  • 31. Fukumoto, K., Yoshizawa, M. & Ohno, H. (2005). Room Temperature Ionic Liquids from 20 Natural Amino Acids. J. Am. Chem. Soc. 127(8), 2398–2399. DOI: 10.1021/ja043451i.
  • 32. Allen, C.R., Richard, P.L., Ward, A.J., Van de Water, L.G.A., Masters, A.F. & Maschmeyer, T. (2006). Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Lett. 47(41), 7367–7373. DOI: 10.1016/j.tetlet.2006.08.007.
  • 33. Ossowicz, P., Janus, E., Schroeder, G. & Rozwadowski, Z. (2013). Spectroscopic studies of amino acid ionic liquid-supported Schiff bases. Molecules 18(5), 4986–5004. DOI: 10.3390/molecules18054986 18, 4986–5004.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9611628-748d-4197-ba4b-1d87f29cb3c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.