PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Automated detection of abnormal respiratory sound from electronic stethoscope and mobile phone using MobileNetV2

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Auscultation, a traditional clinical examination method using a stethoscope to quickly assess airway abnormalities, remains valuable due to its real-time, non-invasive, and easy-to-perform nature. Recent advancements in computerized respiratory sound analysis (CRSA) have provided a quantifiable approach for recording, editing, and comparing respiratory sounds, also enabling the training of artificial intelligence models to fully excavate the potential of auscultation. However, existing sound analysis models often require complex computations, leading to prolonged processing times and high calculation and memory requirements. Moreover, the limited diversity and scope of available databases limits reproducibility and robustness, mainly relying on small sample datasets primarily collected from Caucasians. In order to overcome these limitations, we developed a new Chinese adult respiratory sound database, LD-DF RSdb, using an electronic stethoscope and mobile phone. By enrolling 145 participants, 9,584 high quality recordings were collected, containing 6,435 normal sounds, 2,782 crackles, 208 wheezes, and 159 combined sounds. Subsequently, we utilized a lightweight neural network architecture, MobileNetV2, for automated categorization of the four types of respiratory sounds, achieving an appreciable overall performance with an AUC of 0.8923. This study demonstrates the feasibility and potential of using mobile phones, electronic stethoscopes, and MobileNetV2 in CRSA. The proposed method offers a convenient and promising approach to enhance overall respiratory disease management and may help address healthcare resource disparities.
Twórcy
autor
  • Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
autor
  • Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
autor
  • Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
autor
  • Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
autor
  • Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
autor
  • Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
autor
  • Shanghai Hiwein Intelligent Technology Co, Ltd., Shanghai, China
  • Ningbo Leader Medical Technology Co, Ltd, Ningbo, Zhejiang, China
autor
  • Shanghai Hiwein Intelligent Technology Co, Ltd., Shanghai, China
  • Ningbo Leader Medical Technology Co, Ltd, Ningbo, Zhejiang, China
autor
  • Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
autor
  • Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
Bibliografia
  • [1] Bohadana A, Izbicki G, Kraman SS. Fundamentals of lung auscultation. N Engl J Med 2014;370:744-51.
  • [2] Everard ML, Hadjileontiadis LJ, Priftis KN. Breath Sounds : From Basic Science to Clinical Practice. 1st ed. Cham: Springer International Publishing : Imprint: Springer,; 2018. p. 1 online resource (VIII, 319 pages 79 illustrations, 63 illustrations in color.
  • [3] Reichert S, Gass R, Brandt C, Andres E. Analysis of respiratory sounds: state of the art. Clin Med Circ Respirat Pulm Med 2008;2:45-58.
  • [4] Kim Y, Hyon Y, Jung SS, Lee S, Yoo G, Chung C, et al. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci Rep 2021;11:17186.
  • [5] Melbye H, Garcia-Marcos L, Brand P, Everard M, Priftis K, Pasterkamp H. Wheezes, crackles and rhonchi: simplifying description of lung sounds increases the agreement on their classification: a study of 12 physicians’ classification of lung sounds from video recordings. BMJ OpenRespir Res 2016;3:e000136.
  • [6] Mangione S, Nieman LZ. Pulmonary auscultatory skills during training in internal medicine and family practice. Am J Respir Crit Care Med 1999;159:1119-24.
  • [7] Hoyte H, Jensen T, Gjesdal K. Cardiac auscultation training of medical students: a comparison of electronic sensor-based and acoustic stethoscopes. BMC Med Educ 2005;5:14.
  • [8] Cruz-Cunha MM, Miranda IM, Martinho R, Rijo R. Encyclopedia of E-health and telemedicine. Hershey, PA: Medical Information Science Reference, an imprint of IGI Global; 2016.
  • [9] Gurung A, Scrafford CG, Tielsch JM, Levine OS, Checkley W. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Respir Med 2011;105:1396-403.
  • [10] Shi L, Zhang Y, Zhang J. Lung sound recognition method based on wavelet feature enhancement and time-frequency synchronous modeling. IEEE J Biomed Health Inform 2023;27:308-18.
  • [11] Acharya J, Basu A. Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning. IEEE Trans Biomed Circuits Syst 2020;14:535-44.
  • [12] Fraiwan M, Fraiwan L, Alkhodari M, Hassanin O. Recognition of pulmonary diseases from lung sounds using convolutional neural networks and long short-term memory. J Ambient Intell Humaniz Comput 2022;13:4759-71.
  • [13] Chamberlain D, Kodgule R, Ganelin D, Miglani V, Fletcher RR. Application of semisupervised deep learning to lung sound analysis. Annu Int Conf IEEE Eng Med Biol Soc 2016;2016:804-087.
  • [14] Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G. Multichannel lung sound analysis for asthma detection. Comput Methods Programs Biomed 2018;159: 111-23.
  • [15] Sgalla G, Larici AR, Sverzellati N, Bartholmai B, Walsh SLF, Nikolic D, et al. Quantitative analysis of lung sounds for monitoring idiopathic pulmonary fibrosis: a prospective pilot study. Eur Respir J 2019;53.
  • [16] Naqvi SZH, Choudhry MA. An Automated System for Classification of Chronic Obstructive Pulmonary Disease and Pneumonia Patients Using Lung Sound Analysis. Sensors (Basel). 2020;20.
  • [17] Rocha BMM, Filos D, Mendes L, Vogiatzis IM, Perantoni E, Kaimakamis E, et al. А Respiratory Sound Database for the Development of Automated Classification. International Conference on Biomedical and Health Informatics2017.
  • [18] Hsu FS, Huang SR, Huang CW, Huang CJ, Cheng YR, Chen CC, et al. Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database-HF_Lung_V1. PLoS One 2021;16:e0254134.
  • [19] Fraiwan M, Fraiwan L, Khassawneh B, Ibnian A. A dataset of lung sounds recorded from the chest wall using an electronic stethoscope. Data Brief 2021;35:106913.
  • [20] Rossi M, Sovijärvi A, Piirilä P, Vannuccini L, Vanderschoot J. Environmental and subject conditions and breathing manoeuvres for respiratory sound recordings. Eur Respir Rev 2000;10:611-65.
  • [21] Emmanouilidou D, Elhilal M. Characterization of noise contaminations in lung sound recordings. Annu Int Conf IEEE Eng Med Biol Soc 2013;2013:2551-4.
  • [22] Demir F, Sengur A, Bajaj V. Convolutional neural networks based efficient approach for classification of lung diseases. HealthInf Sci Syst 2020;8:4.
  • [23] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Computer Science; 2014.
  • [24] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): IEEE Computer Society; 2015. p. 1-9.
  • [25] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): IEEE Computer Society; 2016. p. 770-78.
  • [26] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): IEEE Computer Society; 2018. p. 4510-20.
  • [27] Pasterkamp H, Brand PL, Everard M, Garcia-Marcos L, Melbye H, Priftis KN. Towards the standardisation of lung sound nomenclature. Eur Respir J 2016;47: 724-32.
  • [28] Saldanha J, Chakraborty S, Patil S, Kotecha K, Kumar S, Nayyar A. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification. PLoS One 2022;17:e0266467.
  • [29] Tran-Anh D, Vu NH, Nguyen-Trong K, Pham C. Multi-task learning neural networks for breath sound detection and classification in pervasive healthcare. Pervasive Mob Comput 2022;86:101685.
  • [30] Sfayyih AH, Sabry AH, Jameel SM, Sulaiman N, Raafat SM, Humaidi AJ, et al. Acoustic-based deep learning architectures for lung disease diagnosis: A comprehensive overview. Diagnostics (Basel) 2023:13.
  • [31] Nguyen T, Pernkopf F. Lung sound classification using co-tuning and stochastic normalization. IEEE Trans Biomed Eng 2022;69:2872-82.
  • [32] Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A. Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of COPD. Sensors (Basel) 2015;15:26978-96.
  • [33] Khan SI, Jawarkar NP, Ahmed V. Cell phone based remote early detection of respiratory disorders for rural children using modified stethoscope. International conference on communication systems & network technologies. 2012.
  • [34] Walker PP, Pompilio PP, Zanaboni P, Bergmo TS, Prikk K, Malinovschi A, et al. Telemonitoring in chronic obstructive pulmonary disease (CHROMED). A randomized clinical trial. Am J Respir Crit Care Med 2018;198:620-68.
  • [35] Wu CT, Li GH, Huang CT, Cheng YC, Chen CH, Chien JY, et al. Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data, machine learning, and deep learning: development and cohort study. JMIR Mhealth Uhealth 2021;9:e22591.
  • [36] Pasterkamp H, Montgomery M, Wiebicke W. Nomenclature used by health care professionals to describe breath sounds in asthma. Chest 1987;92:346-52.
  • [37] Wilkins RL, Dexter JR, Murphy Jr RL, DelBono EA. Lung sound nomenclature survey. Chest 1990;98:886-9.
  • [38] Francis NA, Melbye H, Kelly MJ, Cals JW, Hopstaken RM, Coenen S, et al. Variation in family physicians’ recording of auscultation abnormalities in patients with acute cough is not explained by case mix. A study from 12 European networks. Eur J Gen Pract 2013;19:77-84.
  • [39] Cane RS, McKenzie SA. Parents’ interpretations of children’s respiratory symptoms on video. Arch Dis Child 2001;84:31-4.
  • [40] Elphick HE, Sherlock P, Foxall G, Simpson EJ, Shiell NA, Primhak RA, et al. Survey of respiratory sounds in infants. Arch Dis Child 2001;84:35-9.
  • [41] Mussell MJ. The need for standards in recording and analysing respiratory sounds. Med Biol Eng Comput 1992;30:129-39.
  • [42] Sovijärvi A, Vanderschoot J, Earis J. Standardization of computerized respiratory sound analysis. Eur Respir Rev 2000;10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9603a9c-ad05-4606-8793-e84845202835
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.