Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of numerical and analytical investigations of the influence of raw liquid natural gas (LNG) composition on parameters characterizing the combustion process. The high content of higher hydrocarbons influences the thermodynamic combustion process described with parameters like the adiabatic flame temperature, laminar flame speed and ignition delay time. A numerical study of the impact of LNG fuels on emission characteristics using the Cantera code has been performed. Results have shown that the change of grid natural gas to some types of liquid natural gas can result in an incomplete combustion process and an increase of emission of toxic compounds such as carbon monoxide and unburned hydrocarbons. For all investigated fuels the laminar flame speed rises by about 10% compared to natural gas, while the adiabatic flame temperature is nearly the same. The ignition delay time is decreased with an increase of ethane share in the fuel. The analysis of chemical pathways has shown that hydrogen cyanide and hydrogen formation is present, particularly in the high temperature combustion regimes, which results in an increase of nitric oxide molar fraction in flue gases by even 10% compared to natural gas. To summarize, for some applications, liquid natural gases cannot be directly used as interchangeable fuels in an industry sector, even if they meet the legal requirements.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
3--21
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, Institute of Thermal Energy, Piotrowo 3a, 60-965, Poznan, Poland
autor
- Poznan University of Technology, Institute of Thermal Energy, Piotrowo 3a, 60-965, Poznan, Poland
autor
- Poznan University of Technology, Institute of Thermal Energy, Piotrowo 3a, 60-965, Poznan, Poland
Bibliografia
- [1] Looi K.K., Baheta A.T., Habib K.: Experimental performance and comfort analyses of photovoltaic thermoelectric system in a room air-conditioning application. Heat Transf. Eng. 42(2021), 1172–83. doi: 10.1080/01457632.2020.1777010
- [2] Mosiężny J., Ziegler B., Czyżewski P.: Numerical study of heat and mass flow in phes layered bed heat storage. Int. J. Numer Methods Heat Fluid Flow. 30(2020), 6,3199–3209.
- [3] Li H., Chen L., Wang D., Zhang H.: Analysis of the price correlation between the international natural gas and coal. Energy Procedia 142(2017), 3141–6. doi: 10.1016/j.egypro.2017.12.376
- [4] Mac Kinnon M.A., Brouwer J., Samuelsen S.: The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 64(2018), 62–92. doi:10.1016/j.pecs.2017.10.002
- [5] Natural gas trade via pipeline and LNG shipping worldwide from 2000 to 2019, with a forecast until 2050 https://www.statista.com/statistics/1165885/global-naturalgas-trade-by-flow-type/ (accessed March 16, 2020).
- [6] Lisowski F„ Lisowski E.: Design of internal supports for double-walled liquefied natural gas road tanker. Heat Transf. Eng. 43(2021), 238–47. doi: 10.1080/01457632.2021.1874653
- [7] Akinsipe O., Anozie A., Babatunde D.: A study of LNG processes to determine the effect of end flash systems on efficiency. Arch. Thermodyn. 41(2020), 2, 35–63. doi:10.24425/ather.2020.132959
- [8] Xu S., Chen X., Fan Z., Chen Y., Nie D., Wu Q.: The influence of chemical composition of LNG on the supercritical heat transfer in an intermediate fluid vaporizer. Cryogenics (Guildf) 91(2018), 47–57. doi: 10.1016/j.cryogenics.2018.01.011
- [9] Roy P.S., Ryu C., Park C.S.: Predicting Wobbe index and methane number of a renewable natural gas by the measurement of simple physical properties. Fuel 224(2018), 121–7. doi: 10.1016/j.fuel.2018.03.074
- [10] Liu C., Li F., Ma L.P., Cheng H.M.: Advanced Materials for Energy Storage. Adv. Mater. 22(2010), 28–62. doi: 10.1002/adma.200903328
- [11] Hernik B., Zabłocki W.: Numerical research of combustion with a minimum boiler load. Arch. Thermodyn. 41(2020), 4, 93–114. doi: 10.24425/ather.2020.135855
- [12] Joachimiak D., Frackowiak A.: Experimental and numerical analysis of the gas flow in the axisymmetric radial clearance. Energies 13(2020), 21, 5794. doi: 10.3390/en13215794
- [13] Kindra V.O., Milukov I.A., Shevchenko I.V., Shabalova S.I., Kovalev D.S.: Thermodynamic analysis of cycle arrangements of the coal-fired thermal power plants with carbon capture. Arch. Thermodyn. 42(2021), 4, 103, 21. doi: 10.24425/ather.2021.139653
- [14] Rogers D., Nelson R., Howell N.: LNG in Europe: An Overview of European Import Terminals. King & Spalding LLP, Georgia 2018.
- [15] Wood D.A.: A review and outlook for the global LNG trade. J. Nat. Gas Sci. Eng. 9(2012), 16–27. doi: 10.1016/j.jngse.2012.05.002
- [16] Agentschap NL.: Gas Composition Transition Agency Report 2013. The status of the transition to high-calorific-value gas. Ministerie van Economische Zaken, 2013.
- [17] EN 16726:2015 (E): Gas infrastructure – Quality of gas – Group H – European Standard – Final Draft. 2015.
- [18] ISO 13686:2013(en) Natural gas – Quality designation. 2013.
- [19] ISO 6326-3:1989 Natural gas – Determination of sulfur compounds – Part 3: Determination of hydrogen sulfide, mercaptan sulfur and carbonyl sulfide sulfur by potentiometry. 1980.
- [20] ISO 6978-1:2003 Natural gas – Determination of mercury – Part 1: Sampling of mercury by chemisorption on iodine. 2003.
- [21] ISO 6978-2:2003 Natural gas – Determination of mercury – Part 2: Sampling of mercury by amalgamation on gold/platinum alloy. 2003.
- [22] ISO 6327:1981 Gas analysis – Determination of the water dew point of natural gas– Cooled surface condensation hygrometers. 1981.
- [23] ISO 6976:2016 Natural gas – Calculation of calorific values, density, relative density and Wobbe indices from composition. 2016.
- [24] ISO 13443:1996 Natural gas – Standard reference conditions. 1996.
- [25] Leiker M., Christoph K., Rankl M., Cartellieri W., Pfeifer U.: The evaluation of the antiknocking property of gaseous fuels by means of the methane number and its practical application to gas engines. In: Proc. 9th Int. Cong. on Combustion Engines, Stockholm 1971.
- [26] Kubesh J., King S., Liss W.: Effect of gas composition on octane number of natural gas fuels. SAE Tech. Pap. 922359, 1992. doi: 10.4271/922359
- [27] ISO 15403-1:2006 Natural gas – Natural gas for use as a compressed fuel for vehicles– Part 1: Designation of the quality. 2006.
- [28] Kayadelen H.K.: A multi-featured model for estimation of thermodynamic properties, adiabatic flame temperature and equilibrium combustion products of fuels, fuel blends, surrogates and fuel additives. Energy 143(2018), 241–56. doi: 10.1016/j.energy. 2017.10.106
- [29] Wei W., Yu Z., Zhou T., Ye T.: A numerical study of laminar flame speed of stratified syngas/air flames. Int. J. Hydrogen Energy. 43(2018), 9036–45. doi: 10.1016/j.ijhydene.2018.03.167
- [30] Fieweger K., Blumenthal R., Adomeit G.: Shock-tube investigations on the selfignition of hydrocarbon-air mixtures at high pressures. Symp. Combust. 25(1994),1579–1585. doi: 10.1016/S0082-0784(06)80803-9
- [31] Goodwin D., Moffat H., Speth R.: Cantera: An Object-Oriented Software Toolkit For Chemical Kinetics, Thermodynamics, And Transport Processes. Version 2.3.0. 2017. doi: 10.5281/zenodo.170284
- [32] Sher E., Levinzon D.: Scaling-down of miniature internal combustion engines: Limitations and challenges. Heat. Transf. Eng. 26(2005), 1–4. doi: 10.1080/01457630591004780
- [33] Hermanns R.T.E., Konnov A.A., Bastiaans R.J.M., De Goey L.P.H., Lucka K., Köhne H.: Effects of temperature and composition on the laminar burning velocity of CH4+H2+O2+N2 flames. Fuel 89(2010), 114–21. doi: 10.1016/j.fuel.2009.08.010
- [34] Goodwin D.G, Moffat H.K., Schoegl I., Speth R.L, Weber B.W.: Cantera: An objectoriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.6.0. 2022. doi: 10.5281/zenodo.6387882
- [35] Chemical-Kinetic Mechanisms for Combustion Applications. Univ. Calif., San Diego 2022.
- [36] Slefarski R.: Study on the combustion process of premixed methane flames with CO2 dilution at elevated pressures. Energies 12(2019), 3. doi: 10.3390/en12030348
- [37] Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Song S., Gardiner W.C., Lissianski J.V.V., Zhivey Q.: GRI-Mech 3.0. 2020 http://combustion.berkeley.edu/gri-mech/ (accessed March 10, 2021).
- [38] https://www.euromot.eu/publication-and-events/publications/ (accessed Jan. 16, 2019).
- [39] Barczyński A., Łaciak M.: Interchangeability of gaseous fuels (natural gas). Wiadomości Naft. Gazow. 8(2014), 196 (in Polish).
- [40] Odgers J., Kretschmer D.: Gas turbine fuels and their influence on combustion. Abacus Press, Swinburne 1986.
- [41] Mozgovoy A., Burmeister F., Albus R.: Contribution of LNG use for the low calorific natural gas network’s safe and sustainable operation. Energy Procedia 64(2015), 83–90. doi: 10.1016/j.egypro.2015.01.011
- [42] https://www.cumminswestport.com/models/isx12-g (accessed Oct. 16, 2018).
- [43] Davis S.G., Law C.K.: Determination of fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Technol. 140(1998), 1–6, 427–449.doi: 10.1080/00102209808915781
- [44] Sutton J.A., Williams B.A., Fleming J.W.: Investigation of NCN and prompt-NO formation in low-pressure C1-C4 alkane flames. Combust. Flame 159(2012), 2, 562–76. doi: 10.1016/j.combustflame.2011.08.023
- [45] Lamoureux N., Desgroux P., Bakali A., Pauwels J.F.: Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4–O2–N2 and C2H2–O2–N2 flames. Combust. Flame 157(2010), 1929–1941. doi: 10.1016/j.combust flame.2010.03.013
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d95e93cb-437c-4998-b4c0-ba77eed0c5ae