PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unveiling the impact of temperature inversions on air quality: a comprehensive analysis of polluted and severe polluted days in Istanbul

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main reason that deteriorates air quality in mega cities is the increase in concentrations of air pollutant parameters. Meteorological parameters and atmospheric conditions play an important role in the increase of pollutant concentrations. This study provides insights into temperature inversions (TIs) during polluted days (PDs) and severe polluted days (SPDs) in Istanbul. Key findings include higher inversion frequencies during SPDs, particularly at 0000 UTC, along with a positive relationship between inversion frequencies and pollutant concentrations, notably with a 99% occurrence of inversions at 0000 UTC along SPDs. Analysis of inversion subgroups reveals surface-based inversions (SBIs) dominating at 0000 UTC, while elevated (EIs) and lower-troposphere inversions (LTIs) prevail at 1200 UTC. Winter months exhibit increased frequency and intensity of SBIs, aligning with expectations of subsidence motion under high-pressure systems. Inversion strengths and depths are higher during SPDs, with the highest strengths observed in winter at 0000 UTC and the deepest inversions occurring in winter for SPDs. Generally, the highest inversion strengths and shallowest inversion depths were observed in SBIs. EIs had the lowest frequency during the winter months, while LTIs occurred more often in the spring months. These findings underscore the importance of understanding TI patterns for effective air quality management in Istanbul.
Czasopismo
Rocznik
Strony
969--986
Opis fizyczny
Bibliogr. 71 poz.
Twórcy
autor
  • Department of Meteorological Engineering, University of Samsun, 19 Mayis, Samsun, Turkey
Bibliografia
  • 1. Abdul-Wahab SA, Al-Saifi SY, Alrumhi BA, Abdulraheem MY, Al-Uraimi M (2004) Determination of the features of the low-level temperature inversions above a suburban site in Oman using radiosonde temperature measurements: long-term analysis. J Geophys Res-Atmos 109:D20101. https://doi.org/10.1029/2004jd004543
  • 2. Ahrens CD 2009 Meteorology Today: an Introduction to weather, climate, and the environment, international student Brooks/Cole CengageLearning
  • 3. Al-Hemoud A, Sudairawi MA, Rashidi MA, Behbehani W, Kyahat AA (2019) Temperature inversion and mixing height: critical indicators for air pollution in hot arid climate. Nat Hazards 97:139-155. https://doi.org/10.1007/s11069-019-03631-2
  • 4. Baltaci H, Kindap T, Unal A, Karaca M (2017) The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey). Thoer Appl Climatol 127:563-572. https://doi.org/10.1007/s00704-015-1653-1
  • 5. Baltaci H, Akkoyunlu BO, Arslan H, Yetemen O, Ozdemir ET (2019) The influence of meteorological conditions and atmospheric circulation types on PM10 levels in western Turkey. Environ Monit Assess 191:466. https://doi.org/10.1007/s10661-019-7609-7
  • 6. Baltaci H, Alemdar ÇSO, Akkoyunlu BO (2020) Background atmospheric conditions of high PM10 concentrations in Istanbul, Turkey. Atmos Poll Res 11:1524-1534. https://doi.org/10.1016/j.apr.2020.06.020
  • 7. Beard JD, Beck C, Graham R, Packham SC, Traphagan M, Giles RT, Morgan JG (2012) Winter temperature inversions and emergency department visits for asthma in Salt Lake County, Utah, 2003-2008. Environ Health Perspect 120:1385-1390. https://doi.org/10.1289/ehp.1104349
  • 8. Bilello MA (1968) Survey of Arctic and subarctic temperature inversions. Bull Am Meteorol Soc 49(4):426
  • 9. Bradley RS, Keimig FT, Diaz HF (1992) Climatology of surface-based inversions in the North American Arctic. J Geophys Res Atmos 97(D14):15699-15712. https://doi.org/10.1029/92JD01451
  • 10. Brümmer B, Schultze M (2015) Analysis of a 7-year low-level temperature inversion data set measured at the 280 m high Hamburg weather mast. Meteorol Z 24:481-494. https://doi.org/10.1127/metz/2015/0669
  • 11. Çapraz Ö, Deniz A (2021) Particulate matter (PM10 and PM2.5) concentrations during a Saharan dust episode in Istanbul. Air Qual Atmos Health 14:109-116. https://doi.org/10.1007/s11869-020-00917-4
  • 12. Çapraz Ö, Efe B, Deniz A (2016) Study on the association between air pollution and mortality in istanbul, 2007-2012. Atmos Poll Res 7(1):147-154. https://doi.org/10.1016/j.apr.2015.08.006
  • 13. Çapraz Ö, Deniz A, Dogan N (2017) Effects of air pollution on respiratory hospital admissions in Istanbul, Turkey 2013-2015. Chemosphere 181:544-550. https://doi.org/10.1016Zj.chemosphere.2017.04.105
  • 14. Chen T, Guo J, Tong B, Cohen JB, Chen X, Yun Y, Lv M, Guo X, Lee SS (2022) Elucidating the impact of high- and low-pressure systems on temperature inversion from 9 years of radiosonde observations in Beijing. Atmos Res 271:106115. https://doi.org/10.1016/j.atmosres.2022.106115
  • 15. Czarnecka M, Nidzgorska-Lencewicz J, Rawicki K (2016) Thermal inversions and sulphure dioxide concentrations in some Polish cities in the winter season. J Elem 21:1001-1015. https://doi.org/10.5601/jelem.2016.21.1.1038
  • 16. Czarnecka M, Nidzgorska-Lencewicz J, Rawicki K (2019) Temporal structure of thermal inversions in Łeba (Poland). Theor Appl Climatol 136:1-13. https://doi.org/10.1007/s00704-018-2459-8
  • 17. Dalrymple PC, Lettau HH, Wollaston SH (1966) South pole micrometeorology program: data analysis. In: Rubin MJ (ed) Studies in antarctic meteorology: antarctic research series, vol 9. American Geophysical Union, Washington DC, pp 13-57
  • 18. Das SK, Thatte T, Uma KN, Krishna UVM, Saha SK (2021) Characteristics of temperature inversion from radiosonde measurements in the Western Ghats region. Atmos Res 250:105391. https://doi.org/10.1016/j.atmosres.2020.105391
  • 19. Efe B (2022) Air quality improvement and its relation to mobility during COVID-19 lockdown in Marmara Region. Turkey Environ Mon Asses 194:255. https://doi.org/10.1007/s10661-022-09889-7
  • 20. Efe B, Oztaner YB, Deniz A, Unal A (2022) Analysis of air pollutants in Kagithane valley and Istanbul Metropolitan Area. Air Q Atmos Health 15:1027-1041. https://doi.org/10.1007/s11869-022-01184-1
  • 21. EPA (2023) United States environmental protection agency: Air pollutants criteria. https://epa.gov/criteria-air-pollutants/forms/contact-us-about-criteria-air-pollutants. Accessed 23 January 2023
  • 22. Fedorovich E, Kaiser P, Rau M, Plate E (1996) Wind tunnel study of turbulent flow structure in the convective boundary layer capped by a temperature inversion. J Atmos Sci 53(9):1273-1289. https:// doi.org/10.1175/1520-0469053b1273:wtsotfN2.0.co;2
  • 23. Feng X, Wei S, Wang S (2020) Temperature inversions in the atmospheric boundary layer and lower troposphere over the Sichuan Basin, China: Climatology and impacts on air pollution. Sci Total Environ 726:138579. https://doi.org/10.1016/j.scitotenv.2020.138579
  • 24. Fochesatto GJ (2015) Methodology for determining multilayered temperature inversions. Atmos Meas Tech 8:2051-2060. https://doi.org/10.5194/amt-8-2051-2015
  • 25. Gao Y, Zhang M, Liu Z et al (2015) Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain. Atmos Chem Phys 15(8):4279-4295. https://doi.org/10.5194/acp-15-4279-2015
  • 26. Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge
  • 27. Guo J, Miao Y, Zhang Y et al (2016) The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos Chem Phys 16(20):13309-13319. https://doi.org/10.5194/acp-16-13309-2016
  • 28. Hu XM, Ma ZQ, Lin W et al (2014) Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study. Sci Total Environ 499(15):228-237. https://doi.org/10.1016/j.scitotenv.2014.08.053
  • 29. Hudson SR, Brandt RE (2005) A look at the surface-based temperature inversion on the Antarctic plateau. J Clim 18(11):1673-1696. https://doi.org/10.1175/jcli3360.1
  • 30. incecik S, im U (2012) Air pollution in mega cities: a case study of Istanbul Air pollution monitoring modelling and health. Intech Open Access Publisher. https://doi.org/10.5772/32040
  • 31. Kahl JD, Serreze MC, Schnell RC (1992) Tropospheric low-level temperature inversions in the Canadian Arctic. Atmos Ocean 30:511- 529. https://doi.org/10.1080/07055900.1992.9649453
  • 32. Kasparoglu S, Incecik S, Topcu S (2018) Spatial and temporal variation of O3, NO and NO2 concentrations at rural and urban sites in Marmara Region of Turkey. Atmos Pollut Res 9:1009-1020. https://doi.org/10.1016/j.apr.2018.03.005
  • 33. Kassomenos PA, Koletsis IG (2005) Seasonal variation of the temperature inversions over Athens. Greece Int J Climatol 25(12):1651- 1663. https://doi.org/10.1002/joc.1188
  • 34. Kassomenos PA, Paschalidou AK, Lykoudis S, Koletsis I (2014) Temperature inversion characteristics in relation to synoptic circulation above Athens, Greece. Environ Mon Asset 186:3495-3502. https://doi.org/10.1007/s10661-014-3632-x
  • 35. Kaya İ, Özdemir H, Çapraz Ö, Atmaca E, Turkel V, Deniz A, Demir G, Unal A (2023) An urban air quality assessment based on a meteorological perspective. Environ Mon Asses 195:1021. https://doi.org/10.1007/s10661-023-11643-6
  • 36. Kukkonen J, Pohjola M, Sokhi RS et al (2005) Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London. Milan and Oslo Atmos Environ 39(15):2759-2773. https://doi.org/10.1016/j.atmosenv.2004.09. 090
  • 37. Largeron Y, Staquet C (2016) Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos Environ 135:92-108. https://doi.org/10.1016/j.atmosenv.2016.03.045
  • 38. Lee X (2018) Balance of forces in the atmospheric boundary layer. Fundamentals of Boundary-Layer Meteorology. Springer International Publishing, Cham 101-120
  • 39. Lencewicz NJ, Czarnecka M (2015) Winter weather conditions versus air quality in Tricity. Poland Theor Appl Climatol 119:611-627. https://doi.org/10.1007/s00704-014-1129-8
  • 40. Lesins G, Duck TJ, Drummond JR (2012) Surface energy balance framework for Arctic amplification of climate change. J Clim 25(23):8277-8288. https://doi.org/10.1175/JCLI-D-11-00711.1
  • 41. Li MM, Song Y, Huang X, Li JF, Mao Y, Zhu T, Cai XH, Liu B (2014) Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region. China J Geophys Res-Atmos 119(11):6325-6346. https://doi.org/10.1002/2014j d021871
  • 42. Li J, Chen HB, Li ZQ, Wang PC, Cribb M, Fan XH (2015) Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Adv Atmos Sci 32(7):898-908. https://doi.org/10.1007/s00376-014-4150-z
  • 43. Malek E, Davis T, Martin RS, Silva PJ (2006) Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmos Res 79:108-122. https://doi.org/10.1016/j.atmosres.2005.05.003
  • 44. Malek M, Al-Hemoud A, AlSaraf M, Yassin MF, Al-Khayat A, Al-Sudairawi M (2023) Effects of dust and meteorological variables on temperature inversion over Kuwait. Model Earth Syst Environ 9:1825-1834. https://doi.org/10.1007/s40808-022-01586-1
  • 45. Mayfield JA, Fochesatto GJ (2013) The layered structure of the winter atmospheric boundary layer in the interior of Alaska. J Appl Meteorol Climatol 52(4):953-973. https://doi.org/10.1175/JAMC-D-12-01.1
  • 46. Milionis AE, Davies TD (2002) Association between atmospheric temperature inversions and vertical wind profiles: a preliminary assessment. Meteorol Appl 9(2):223-228. https://doi.org/10.1017/S1350482702002074
  • 47. Olofson KFG, Andersson PU, Hallquist M et al (2009) Urban aerosol evolution and particle formation during wintertime temperature
  • 48. inversions. Atmos Environ 43:340-346. https://doi.Org/10.1016/j.atmosenv.2008.09.080
  • 49. Özdemir ET, Deniz A, Sezen i, Aslan Z, Yavuz V (2017) Investigation of thunderstorms over Ataturk International Airport (LTBA) Istanbul. Mausam 68(1):175-180
  • 50. Özdemir ET, Deniz A, Yavuz V, Dogan N, Akbayir i (2018) Investigation of the fog-air quality relationship in Istanbul. Fresenius Environ Bull 27(1):30-36
  • 51. Palarz A, Celiński-Mysław D, Ustrnul Z (2017) Temporal and spatial variability of surface-based inversions over Europe based on ERAinterim reanalysis. Int J Climatol 38:158-168. https://doi.org/10.1002/joc.5167
  • 52. Silva PJ, Vawdrey EL, Corbett M, Erupe M (2007) Fine particle concentrations and composition during wintertime inversions in Logan, Utah, USA. Atmos Environ 41:5410-5422. https://doi.org/10.1016/j.atmosenv.2007.02.016
  • 53. Stryhal J, Huth R, Sladek I (2017) Climatology of low-level temperature inversions at the Prague-Libus aerological station. Theor Appl Climatol 127:409-420. https://doi.org/10.1007/s00704-015-1639-z
  • 54. Thadathil P, Suresh I, Gautham S et al (2016) Surface layer temperature inversion in the Bay of Bengal: main characteristics and related mechanisms. J Geophys Res Oceans 121(8):5682-5696. https://doi.org/10.1002/2016JC011674
  • 55. TMEUCC (2023) Turkish ministry of environment, urbanization and climate change. https://www.csb.gov.tr/en Accessed 6 January 2023
  • 56. Unal YS, Toros H, Deniz A, Incecik S (2011) Influence of meteorological factors and emission sources on spatial and temporal variations of PM10 concentrations in Istanbul metropolitan area. Atmos Environ 45(31):5504-5513. https://doi.org/10.1016/j.atmosenv.2011.06.039
  • 57. University of Wyoming (2023) Upper-level atmospheric charts. http://weather.uwyo.edu/upperair/sounding.html Accessed 7 January 2023
  • 58. Wallace J, Corr D, Kanaroglou P (2010) Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Sci Total Environ 408(21):5086-5096. https://doi.org/10.1016/j.scitotenv.2010.06.020
  • 59. Wang M, Kai K, Sugimoto N, Enkhmaa S (2018) Meteorological factors affecting winter particulate air pollution in ulaanbaatar from 2008-2016. Asian J Atmos Environ 12(3):244-254. https://doi.org/10.5572/ajae.2018.12.3.244
  • 60. Whiteman C (2000) Mountain meteorology: fundamentals and applications, 1st edn. Oxford University Press, New York
  • 61. Xu T, Song Y, Liu M et al (2019) Temperature inversions in severe polluted days derived from radiosonde data in North China from 2011 to 2016. Sci Total Environ 647:1011-1020. https://doi.org/10.1016/j.scitotenv.2018.08.088
  • 62. Yavuz V (2023) An analysis of atmospheric stability indices and parameters under air pollution conditions. Environ Monit Assess 195:934. https://doi.org/10.1007/s10661-023-11556-4
  • 63. Yavuz V, Deniz A, Ozdemir ET (2021a) Analysis of a vortex causing sea-effect snowfall in the western part of the Black Sea: a case study of events that occurred on 30-31 January 2012. Nat Hazards 108:819-846. https://doi.org/10.1007/s11069-021-04707-8
  • 64. Yavuz V, Deniz A, Ozdemir ET, Kolay O, Karan H (2021b) Classification and analysis of sea-effect snowbands for Danube Sea area in Black Sea. Int J Climatol 41(5):3139-3152. https://doi.org/10.1002/joc.7010
  • 65. Yavuz V, Lupo AR, Fox NI, Deniz A (2022a) The role of short-wave troughs on the formation and development of sea-effect snow-bands in the western Black Sea. Theor Appl Climatol 149:501- 510. https://doi.org/10.1007/s00704-022-04071-y
  • 66. Yavuz V, Lupo AR, Fox NI, Deniz A (2022b) Meso-scale comparison of non-sea-effect and sea-effect snowfalls, and development of prediction algorithm for Megacity Istanbul Airports in Turkey.
  • 67. Atmosphere 13(5):567. https://doi.org/10.3390/atmos13050657
  • 68. Yavuz V, Ozen C, Çapraz Ö, Özdemir ET, Deniz A, Akbayır İ, Temur H (2022c) Analysing of atmospheric conditions and their effects on air quality in Istanbul using SODAR and CEILOMETER. Environ Sci Pollut Res 29(11):16213-16232. https://doi.org/10.1007/s11356-021-16958-w
  • 69. Yurtseven E, Vehid S, Bosat M, Koksal S, Yurtseven CN (2018) Assessment of ambient air pollution in istanbul during 2003¬2013. Iran J Public Health 47(8):1137-1144
  • 70. Zannetti P (1990) Air pollution modeling: theories computational methods and available software. Van Nostrand Reinhold, New York
  • 71. Zhang Y, Seidel DJ, Golaz J-C, Deser C, Tomas RA (2011) Climatological characteristics of Arctic and Antarctic surface based inversions. J Clim 24(19):5167-5186. https://doi.org/10.1175/2011JCLI4004.1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d959f93a-31af-460c-81a0-61a4d747c7b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.