PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current manuscript, we combine the q-fractional integral operator and q-fractional derivative to investigate a coupled hybrid fractional q-differential systems with sequential fractional q-derivatives. The existence and uniqueness of solutions for the proposed system are established by means of Leray-Schauder’s alternative and the Banach contraction principle. Furthermore, the Ulam-Hyers and Ulam-Hyers-Rassias stability results are discussed. Finally, two illustrative examples are given to highlight the theoretical findings.
Wydawca
Rocznik
Strony
art. no. 20220205
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Department of Mathematics and Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia
  • Department of Industrial Engineering, OSTİM Technical University, Ankara 06374, Türkiye
  • Laboratory FIMA, UDBKM, Khemis Miliana University, Algeria
  • Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
Bibliografia
  • [1] K. Shah, M. Arfan, A. Ullah, Q. Al-Mdallal, K. J. Ansari, and T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications, Chaos Solitons Fractals 157 (2022), 111955.
  • [2] K. Shah, T. Abdeljawad, B. Abdalla, and M. S. Abualrub, Utilizing fixed point approach to investigate piecewise equations with non-singular type derivative, Aims Math. 7 (2022), no. 8, 14595–14613.
  • [3] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
  • [4] P. Agarwal and J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc. 53 (2016), no. 5, 1183–1210.
  • [5] P. Agarwal, M. Jleli, and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl. 55 (2017), 1–10.
  • [6] P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Meth. Appl. Sci. 40 (2017), no. 11, 3882–3891.
  • [7] Y. M. Chu, N. A. Shah, P. Agarwal, and J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Difference Equ. 91 (2021), 1–18.
  • [8] V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. AltafKhan, and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach, Phys. A Statist. Mech. Appl. 523, (2019), 48–65.
  • [9] M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, et al., Fractional order mathematical modeling of typhoid fever disease, Results Phys. 32 (2022), no. 105044, 1–13.
  • [10] F. Jarad, T. Abdeljawad, and D. Baleanu, Stability of q-fractional non-autonomous systems, Nonlinear Anal. Real World Appl. 14 (2013), no. 1, 780–784.
  • [11] S. Liang and M. E. Samei, New approach to solutions of a class of singular fractional q-differential problem via quantum calculus, Adv. Difference Equ. 14 (2020), 1–22.
  • [12] J. Tariboon, S. K. Ntouyas, and P. Agarwa, New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Adv. Difference Equ. 18 (2015), 1–19.
  • [13] B. C. Dhage and V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal Hybrid Sys. 4, (2010), no. 3, 414–424.
  • [14] B. Dhage and N. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math. 44 (2013), no. 2, 171–186.
  • [15] B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett. 18 (2005), no. 3, 273–280.
  • [16] A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, and S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Difference Equ. 367 (2021), 1–23.
  • [17] M. I. Abbas and M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry 13 (2021), no. 2, 264.
  • [18] A. Ali, K. Shah, and R. A. Khan, Existence of solution to a coupled system of hybrid fractional differential equations, Bull. Math. Anal. Appl. 9 (2017), no. 1, 9–18.
  • [19] K. Buvaneswari, P. Karthikeyan, and D. Baleanu, On a system of fractional coupled hybrid Hadamard differential equations with terminal conditions, Adv. Difference Equ. 419 (2020), 1–12.
  • [20] A. Samadi, S. K. Ntouyas, and J. Tariboon, Nonlocal coupled hybrid fractional system of mixed fractional derivatives via an extension of Darboas theorem, Aims Math. 6 (2021), no. 4, 3915–3926.
  • [21] B. Ahmad and S. K. Ntouyas, Fractional q-difference hybrid equations and inclusions with Dirichlet boundary conditions, Adv. Difference Equ. 199 (2014), 1–14.
  • [22] M. Houas, Existence and stability results for hybrid fractional q-differential pantograph equations, Asia Mathematika 5 (2021), no. 2, 20–35.
  • [23] M. E. Samei and G. K. Ranjbar, Some theorems of existence of solutions for fractional hybrid q-difference inclusions, J. Adv. Math. Stud. 12 (2019), no. 1, 63–76.
  • [24] M. Hannabou, K. Hilal, and A. Kajouni, Existence results of hybrid fractional sequential integro-differential equations, Eng. Math. Lett. 2 (2020), 1–19.
  • [25] R. A. Khan, S. Gul, F. Jarad, and H. Khan, Existence results for a general class of sequential hybrid fractional differential equations Adv. Difference Equ. 284 (2021), 1–14.
  • [26] M. Klimek, Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 4689–4697.
  • [27] H. Mohammadi, S. Rezapour, S. Etemad, and D. Baleanu, Two sequential fractional hybrid differential inclusions, Adv. Difference Equ. 385 (2020), 1–24.
  • [28] M. H. Annaby and Z. S. Mansour, q-fractional calculus and equations, Lecture Notes in Mathematics. vol. 2056, Springer-Verlag, Berlin, 2012.
  • [29] R. Floreanini and L. Vinet. Quantum symmetries of q-difference equations, J. Math. Phys. 36 (1995), no. 6, 3134–3156.
  • [30] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Cambridge Philos. Soc. 66 (1969), 365–370.
  • [31] P. M. Rajkovic, S. D. Marinkovic, and M. S. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffer function, Fract. Calc. Appl. Anal. 10 (2007), no. 4, 359–373.
  • [32] J. Choi and P Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues, Abstract Appl. Anal. 2014 (2014), 579260, 1–12.
  • [33] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, NY, USA, 2003.
  • [34] M. Jamil, R. A. Khan, and K. Shah, Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations, Adv. Difference Equ. 77 (2019), 1–12.
  • [35] V. Kalvandi, M. E. Samei, New stability results for a sum-type fractional q-integro-differential equation, J. Adv. Math. Stud. 12 (2019), no. 2, 201–209.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d957e136-5d27-4092-af5e-fc43daf9eac2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.