Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the current manuscript, we combine the q-fractional integral operator and q-fractional derivative to investigate a coupled hybrid fractional q-differential systems with sequential fractional q-derivatives. The existence and uniqueness of solutions for the proposed system are established by means of Leray-Schauder’s alternative and the Banach contraction principle. Furthermore, the Ulam-Hyers and Ulam-Hyers-Rassias stability results are discussed. Finally, two illustrative examples are given to highlight the theoretical findings.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220205
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Department of Mathematics and Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia
- Department of Industrial Engineering, OSTİM Technical University, Ankara 06374, Türkiye
autor
- Laboratory FIMA, UDBKM, Khemis Miliana University, Algeria
autor
- Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
Bibliografia
- [1] K. Shah, M. Arfan, A. Ullah, Q. Al-Mdallal, K. J. Ansari, and T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications, Chaos Solitons Fractals 157 (2022), 111955.
- [2] K. Shah, T. Abdeljawad, B. Abdalla, and M. S. Abualrub, Utilizing fixed point approach to investigate piecewise equations with non-singular type derivative, Aims Math. 7 (2022), no. 8, 14595–14613.
- [3] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
- [4] P. Agarwal and J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc. 53 (2016), no. 5, 1183–1210.
- [5] P. Agarwal, M. Jleli, and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl. 55 (2017), 1–10.
- [6] P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Meth. Appl. Sci. 40 (2017), no. 11, 3882–3891.
- [7] Y. M. Chu, N. A. Shah, P. Agarwal, and J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Difference Equ. 91 (2021), 1–18.
- [8] V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. AltafKhan, and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach, Phys. A Statist. Mech. Appl. 523, (2019), 48–65.
- [9] M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, et al., Fractional order mathematical modeling of typhoid fever disease, Results Phys. 32 (2022), no. 105044, 1–13.
- [10] F. Jarad, T. Abdeljawad, and D. Baleanu, Stability of q-fractional non-autonomous systems, Nonlinear Anal. Real World Appl. 14 (2013), no. 1, 780–784.
- [11] S. Liang and M. E. Samei, New approach to solutions of a class of singular fractional q-differential problem via quantum calculus, Adv. Difference Equ. 14 (2020), 1–22.
- [12] J. Tariboon, S. K. Ntouyas, and P. Agarwa, New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Adv. Difference Equ. 18 (2015), 1–19.
- [13] B. C. Dhage and V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal Hybrid Sys. 4, (2010), no. 3, 414–424.
- [14] B. Dhage and N. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math. 44 (2013), no. 2, 171–186.
- [15] B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett. 18 (2005), no. 3, 273–280.
- [16] A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, and S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Difference Equ. 367 (2021), 1–23.
- [17] M. I. Abbas and M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry 13 (2021), no. 2, 264.
- [18] A. Ali, K. Shah, and R. A. Khan, Existence of solution to a coupled system of hybrid fractional differential equations, Bull. Math. Anal. Appl. 9 (2017), no. 1, 9–18.
- [19] K. Buvaneswari, P. Karthikeyan, and D. Baleanu, On a system of fractional coupled hybrid Hadamard differential equations with terminal conditions, Adv. Difference Equ. 419 (2020), 1–12.
- [20] A. Samadi, S. K. Ntouyas, and J. Tariboon, Nonlocal coupled hybrid fractional system of mixed fractional derivatives via an extension of Darboas theorem, Aims Math. 6 (2021), no. 4, 3915–3926.
- [21] B. Ahmad and S. K. Ntouyas, Fractional q-difference hybrid equations and inclusions with Dirichlet boundary conditions, Adv. Difference Equ. 199 (2014), 1–14.
- [22] M. Houas, Existence and stability results for hybrid fractional q-differential pantograph equations, Asia Mathematika 5 (2021), no. 2, 20–35.
- [23] M. E. Samei and G. K. Ranjbar, Some theorems of existence of solutions for fractional hybrid q-difference inclusions, J. Adv. Math. Stud. 12 (2019), no. 1, 63–76.
- [24] M. Hannabou, K. Hilal, and A. Kajouni, Existence results of hybrid fractional sequential integro-differential equations, Eng. Math. Lett. 2 (2020), 1–19.
- [25] R. A. Khan, S. Gul, F. Jarad, and H. Khan, Existence results for a general class of sequential hybrid fractional differential equations Adv. Difference Equ. 284 (2021), 1–14.
- [26] M. Klimek, Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 4689–4697.
- [27] H. Mohammadi, S. Rezapour, S. Etemad, and D. Baleanu, Two sequential fractional hybrid differential inclusions, Adv. Difference Equ. 385 (2020), 1–24.
- [28] M. H. Annaby and Z. S. Mansour, q-fractional calculus and equations, Lecture Notes in Mathematics. vol. 2056, Springer-Verlag, Berlin, 2012.
- [29] R. Floreanini and L. Vinet. Quantum symmetries of q-difference equations, J. Math. Phys. 36 (1995), no. 6, 3134–3156.
- [30] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Cambridge Philos. Soc. 66 (1969), 365–370.
- [31] P. M. Rajkovic, S. D. Marinkovic, and M. S. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffer function, Fract. Calc. Appl. Anal. 10 (2007), no. 4, 359–373.
- [32] J. Choi and P Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues, Abstract Appl. Anal. 2014 (2014), 579260, 1–12.
- [33] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, NY, USA, 2003.
- [34] M. Jamil, R. A. Khan, and K. Shah, Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations, Adv. Difference Equ. 77 (2019), 1–12.
- [35] V. Kalvandi, M. E. Samei, New stability results for a sum-type fractional q-integro-differential equation, J. Adv. Math. Stud. 12 (2019), no. 2, 201–209.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d957e136-5d27-4092-af5e-fc43daf9eac2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.