PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plant classification based on leaf edges and leaf morphological veins using wavelet convolutional neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The leaf is one of the plant organs, contains chlorophyll, and functions as a catcher of energy from sunlight which is used for photosynthesis. Perfect leaves are composed of three parts, namely midrib, stalk, and leaf blade. The way to identify the type of plant is to look at the shape of the leaf edges. The shape, color, and texture of a plant's leaf margins may influence its leaf veins, which in this vein morphology carry information useful for plant classification when shape, color, and texture are not noticeable. Humans, on the other hand, may fail to recognize this feature because they prefer to see plants solely based on leaf form rather than leaf margins and veins. This research uses the Wavelet method to denoise existing images in the dataset and the Convolutional Neural Network classifies through images. The results obtained using the Wavelet Convolutional Neural Network method are equal to 97.13%.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 30 poz., fig. tab.
Twórcy
autor
  • President University, Faculty of Computing, Information Technology
  • President University, Faculty of Computing, Information Technology
Bibliografia
  • [1] Alimboyong, C. R., & Hernandez, A. A. (2019). An Improved Deep Neural Network for Classification of Plant Seedling Images. 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 217–222). IEEE. https://doi.org/10.1109/CSPA.2019.8696009
  • [2] Bouny, L. El., Khalil, M., & Adib, A. (2020). ECG Heartbeat Classification Based On Multi-Scale Wavelet Convolutional Neural Networks. ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3212–3216). IEEE. https://doi.org/10.1109/ ICASSP40776.2020.9054749
  • [3] Choi, K. S., Shin, J. S., Lee, J. J., Kim, Y. S., Kim, S. B., & Kim, C. W. (2005). Gradient-Based Learning Applied to Document Recognition. Biochemical and Biophysical Research Communications, 330(4), 1299–1305. https://doi.org/10.1016/j.bbrc.2005.03.111
  • [4] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR (pp. 1800–1807). IEEE. https://doi.org/10.1109/CVPR.2017.195
  • [5] Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep convolutional neural network. Biosystems Engineering, 151(2005), 72–80. https://doi.org/10.1016/j.biosystemseng.2016.08.024
  • [6] Fujieda, S., Takayama, K., & Hachisuka, T. (2018). Wavelet convolutional neural networks. In arXiv: Vol. arXiv:1805. arXiv:1805.08620.
  • [7] Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, 127, 418–424. https://doi.org/10.1016/ j.compag.2016.07.003
  • [8] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013
  • [9] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 770–778). IEEE. https://doi.org/10.1109/CVPR.2016.90
  • [10] Heredia, I. (2017). Large-scale plant classification with deep neural networks. ACM International Conference on Computing Frontiers 2017, CF 2017 (pp. 259–262). Association for Computing Machinery. https://doi.org/10.1145/3075564.3075590
  • [11] Hongqiao, L., & Shengqian, W. (2009). A new image denoising method using wavelet transform. Proceedings - 2009 International Forum on Information Technology and Applications, IFITA 2009 (1(1), pp. 111–114). https://doi.org/10.1109/IFITA.2009.47
  • [12] Kimlyk, M., & Umnyashkin, S. (2018). Image Denoising Using Discrete Wavelet Transform and Edge Information. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 1823–1825). IEEE. https://doi.org/10.1109/EIConRus.2018.8317461
  • [13] Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (pp. 1–15). arXiv.org.
  • [14] Krizhevsky, B. A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6), 84–90.
  • [15] Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • [16] Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, 1–13. https://doi.org/10.1016/j.patcog.2017.05.015
  • [17] Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015). Deep-plant: Plant identification with convolutional neural networks. Proceedings - International Conference on Image Processing, ICIP (pp. 452–456). https://doi.org/10.1109/ICIP.2015.7350839
  • [18] Liu, J., Yang, S., Cheng, Y., & Song, Z. (2019). Plant Leaf Classification Based on Deep Learning. Proceedings 2018 Chinese Automation Congress, CAC 2018 (pp. 3165–3169). Xi'an, China. https://doi.org/10.1109/CAC.2018.8623427
  • [19] Liu, P., Zhang, H., Zhang, K., Lin, L., & Zuo, W. (2018). Multi-level wavelet-CNN for image restoration. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 886–895). IEEE. https://doi.org/10.1109/CVPRW.2018.00121
  • [20] Mohideen, S. K., Perumal, S. A., & Sathik, M. M. (2008). Image De-noising using Discrete Wavelet transform. IJCSNS International Journal of Computer Science and Network Security, 8(1), 8–11.
  • [21] Ramanarayanan, S., Murugesan, B., Ram, K., & Sivaprakasam, M. (2020). DC-WCNN: A Deep Cascade of Wavelet Based Convolutional Neural Networks for MR Image Reconstruction. Proceedings - International Symposium on Biomedical Imaging (pp. 1069–1073). IEEE. https://doi.org/10.1109/ISBI45749.2020.9098491
  • [22] Scoffoni, C., Rawls, M., Mckown, A., Cochard, H., & Sack, L. (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156(2), 832–843. https://doi.org/10.1104/pp.111.173856
  • [23] Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings (pp. 1–14). CoRR, abs/1409.1556.
  • [24] Song, Q., Ma, L., Cao, J., & Han, X. (2016). Image Denoising Based on Mean Filter and Wavelet Transform. Proceedings – 2015 4th International Conference on Advanced Information Technology and Sensor Application, AITS (pp. 39–42). IEEE. https://doi.org/10.1109/AITS.2015.17
  • [25] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-ResNet and the impact of residual connections on learning. 31st AAAI Conference on Artificial Intelligence (pp. 4278–4284). AAAI.
  • [26] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A., (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–9). IEEE. https://doi.org/10.1109/cvpr.2015.7298594
  • [27] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2818–2826). IEEE. https://doi.org/10.1109/CVPR.2016.308
  • [28] Xie, S., Girshick, R., & Doll, P. (2017). Aggregated Residual Transformations for Deep Neural Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5987–5995). IEEE. https://doi.org/10.1109/CVPR.2017.634
  • [29] Yalcin, H., & Razavi, S. (2016). Plant classification using convolutional neural networks. 2016 Fifth International Conference on Agro–Geoinformatics (Agro-Geoinformatics) (pp. 1-5). IEEE. https://doi.org/10.1109/Agro-Geoinformatics.2016.7577698
  • [30] Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), 1–25. https://doi.org/10.1002/widm.1253
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d954f3d9-fd06-43ed-bc5e-654f5b5213cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.