PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetostrictive Functional Materials of Tb0.27Dy0.73(Fe1-xAlx)2 Series as Prospective Constituents of Magnetoelectric Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Structural, magnetic, and magnetostrictive properties of two-sublattice Tb0.27Dy0.73(Fe1-xAlx)2 polycrystalline intermetallic ferrimagnets (x = 0-0.2 and 1.0) were studied using X-ray powder diffraction, magnetometry, and strain gauge magnetostriction measurements. Temperature dependences of magnetization starting from 80 K were presented, and Curie temperatures were estimated. Coercive force, residual, and saturation magnetizations were determined from the magnetic hysteresis loops at room temperature. Longitudinal, transversal, form and volume magnetostrictions were investigated against the x parameter and the intensity of the magnetic field. The piezomagnetic coefficients were determined and the maximum value at the field below 1 kOe, even enhanced than that in Terfenol-D, was observed for the material TTb0.27Dy0.73(Fe0.9Al0.1)2. It means that this compound is promising for use in magnetoelectric composites.
Twórcy
  • Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
autor
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Academic Centre for Materials and Nanotechnology AGH, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Academic Centre for Materials and Nanotechnology AGH, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] K.N.R. Taylor, Intermetallic rare-earth compounds Adv. Phys. 20 551-660 (1971). DOI: https://doi.org/10.1080/0001-873(71)00101311
  • [2] K.H.J. Buschow, in: E.P. Wohlfarth (Ed.), Ferromagnetic Materials 1, North-Holland Publishing Company, Amsterdam (1980).
  • [3] I.A. Campbell, Indirect exchange for rare earths in metals, J. Phys. F: Metal Phys. 2 L47-L50 (1972). DOI: https://doi.org/10.1088/0305-4608/2/2/004
  • [4] B. Gicala, J. Pszczoła, Z. Kucharski, J. Suwalski, Two Slater-Pauling dependences for Dy-3d metal compounds, Phys. Lett. A 185, 491-494 (1994). DOI: https://doi.org/10.1016/0375-9601(94)91131-2
  • [5] S. Legvold, in: E.P. Wohlfarth (Ed.), Ferromagnetic Materials 1, North-Holland Publishing Company, Amsterdam (1980).
  • [6] G. Engdahl (Ed.), Handbook of Giant Magnetostrictive Materials, Academic Press, New York (2000).
  • [7] A.E. Clark, in: E.P. Wohlfarth (Ed.), Ferromagnetic Materials 1, North-Holland Publishing Company, Amsterdam (1980).
  • [8] H. Cao, N. Zhang, J. Wei, Doping effect on crystal structure of BaTiO3 and magnetoelectric coupling of layered composites Tb1-xDyxFe2-y-BaTi0.99M0.01O3+δ, J. Alloys Compd. 472, 257-261 (2009). DOI: https://doi.org/10.1016/j.jallcom.2008.04.060
  • [9] P. Record, C. Popov, J. Fletcher, E. Abraham, Z. Huang, H. Chang, R.W. Whatmore, Direct and converse magnetoelectric effect in laminate bonded Terfenol‑D‑PZT composites, Sens. Actuators B-Chem 126, 344-349 (2007). DOI: https://doi.org/10.1016/j.snb.2007.05.047
  • [10] P. Guzdek, W. Grzesiak, K. Witek, K. Zaraska, B. Winiarska, Liniowy aktuator magnetoelektryczny, Przegląd Elektrotechniczny 8, 55-58 (2018). DOI: https://doi.org/10.15199/48.2018.08.15
  • [11] M. Szklarska-Łukasik, P. Guzdek, M. Dudek, A. Pawlaczyk, J. Chmist, W. Dorowski, J. Pszczoła, Magnetoelectric properties of Tb0.27-xDy0.73-yYx+yFe2/PVDF composites, J. Alloys Compd. 549, 276-282 (2013). DOI: https://doi.org/10.1016/j.jallcom.2012.08.093
  • [12] C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys. 103, 031101 (2008). DOI: https://doi.org/10.1063/1.2836410
  • [13] P. Guzdek, M. Wzorek, Magnetoelectric properties in bulk and layered composites, Microelectron. Int. 32, 110-114 (2015). DOI: https://doi.org/10.1108/MI-01-2015-0012
  • [14] J. Ma, J. Hu, Z. Li, C.W. Nan, Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films, Adv. Mater. 23, 1062-1087 (2011). DOI: https://doi.org/10.1002/adma.201003636
  • [15] J. Pszczoła, B. Gicala, J. Suwalski, 57Fe Slater-Pauling dependence in the Dy(Fe1-xAlx)2 intermetallic system, J. Alloys Compd. 274, 47-54 (1998). DOI: https://doi.org/10.1016/S0925-8388(98)00562-3
  • [16] J. Pszczoła, P. Stoch, J. Suwalski, J. Żukrowski, Mössbauer effect studies of Dy[(Fe0.7Co0.3)1-xAlx]2 and Dy[(Fe0.4Co0.6)1-xAlx]2 compounds, J. Alloys Compd. 364, 29-36 (2004). DOI: https://doi.org/10.1016/S0925-8388(03)00549-8
  • [17] X. Zheng, P. Zhang, D. Fan, F. Li, Y. Hao, Sci China Ser G: Structure, spin reorientation and Mössbauer effect studies of Tb0.3Dy0.7(Fe1-xAlx)1.95 alloys, Phy. & Ast. 49, 149-157 (2006). DOI: https://doi.org/10.1007/s11433-006-0149-5
  • [18] H. Guo, H. Yang, B. Schen, L. Yang, R. Li, Structural, magnetic and magnetostrictive studies of Tb0.27Dy0.73(Fe-xAlx)2, J. Alloys Compd. 190, 255-258 (1993). DOI: https://doi.org/10.1016/0925-8388(93)90407-E
  • [19] M. Khan, A.K. Pathak, Y. Mudryk, K.A. Gschneidner, Jr., V.K. Pecharsky Anisotropy induced anomalies in Dy1-xTbxAl2, J. Mater. Chem. C 5, 896-901 (2017). DOI: https://doi.org/10.1039/C6TC05384J
  • [20] M. Onak, J. Pszczoła, An arc melting system with a non-contact ignition, Phys. Econ. 2, 27-41 (2018). DOI: https://doi.org/10.7862/rf.2018.pfe.3
  • [21] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2, 65-71 (1969). DOI: https://doi.org/10.1107/s0021889869006558
  • [22] J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192, 55-69 (1993). DOI: https://doi.org/10.1016/0921-4526(93)90108-I
  • [23] J. Pszczoła, A. Feret, B. Winiarska, L. Dąbrowski, J. Suwalski, Mössbauer effect studies of Dy[(Fe0.7Co0.3)1-xAlx]2 intermetallics, J. Alloys and Compounds 299, 59-67 (2000). DOI: https://doi.org/10.1016/S0925-8388(99)00793-8
  • [24] F. Laves, H.J. Wallbaum, Zur Kristallchemie von Titan-Legierungen, Naturwissenschaften 27, 674-675 (1939). DOI: https://doi.org/10.1007/BF01494992
  • [25] Periodic Tables by Sargent-Welch Scientific Company, Sargent-Welch Scientific Company, Skokie (1980).
  • [26] K.R. Dhilsha, K.V.S. Rama Rao, Investigation of magnetic, magnetomechanical, and electrical properties of the Tb0.27Dy0.73Fe2-xCox system, J. Appl. Phys. 73 1380-1385 (1993). DOI: https://doi.org/10.1063/1.353258
  • [27] L. Sandlund, M. Fahlander, T. Cedell, A. E. Clark, J. B. Restorff, M. Wun-Fogle, elastic moduli, and coupling factors of composite Terfenol-D, J. Appl. Phys., Magnetostriction, 75, 5656-5658 (1994). DOI: https://doi.org/10.1063/1.355627
  • [28] J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge Univ. Press, New York (2010). DOI: https://doi.org/10.1017/CBO9780511845000
  • [29] D.C. Jiles, Recent advances and future directions in magnetic materials, Acta Mater. 51, 5907-5939 (2003). DOI: https://doi.org/10.1016/j.actamat.2003.08.011
  • [30] P. Chaddah, First Order Phase Transitions of Magnetic Materials. Broad and Interrupted Transitions, CRC Press, Boca Raton (2017). DOI: https://doi.org/10.1201/9781315155883
Uwagi
1. Dr. D. Tyrała is acknowledged for the scanning electron microscope test of samples. The work has been partly supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00, by AGH University, project no 11.11.220.01 and by the Polish Ministry of Science and Higher Education from the budget for science in the years 2013-2015, project No. IP2012 029772.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9543f9d-2f03-4d0d-859f-09465d34dff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.