PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verifying of the finite element model of the bridge based on the vibration monitoring at differente stages of construction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a dynamic response evaluation of a segmental bridge during two construction stages: before connecting the final segment of the bridge and after connecting the final segment of the bridge but prior to opening the bridge to traffic. The vibration signals obtained from Ambient Vibration Testing (AVT) campaigns were processed in order to obtain the modal parameters of the bridge during the two construction stages. Modal parameters experimentally obtained for the first stage were compared with those obtained from Finite Element (FE) models considering different construction loads scenarios. Finally, modal parameters experimentally obtained for the second stage were used to update its corresponding FE model considering two scenarios, before and after the installation of the asphalt pavement. The results presented in this paper demonstrated that a rigorous construction control is needed in order to effectively calibrate FE models during the construction process of segmental bridges.
Twórcy
autor
  • Industrial University of Santander, School of Civil Engineering, Bucaramanga, Colombia
autor
  • Industrial University of Santander, School of Civil Engineering, Bucaramanga, Colombia
  • University of Antioquia, Faculty of Engineering, Medellin, Colombia
Bibliografia
  • 1. G. Chen, P. Omenzetter, S. Beskhyroun, “Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations”, Engineering Structures 151: 839-860, 2017.
  • 2. C. Costa, D. Ribeiro, P. Jorge, R. Silva, A. Arêde, R. Calçada, “Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters”, Engineering Structures 123: 354-371, 2016.
  • 3. A. Cunha, E. Caetano, F. Magalhaes, C. Moutinho, “From input-output to output-only modal identification of civil engineering structures”, In 1st international Operational Modal Analysis Conference, Rune Brincker (Ed.), Copenhagen, Denmark, 2005.
  • 4. X. Min, L. Oliveira, “Dynamic assessment of the São João bridge structural integrity”. Procedia Structural Integrity, 5: 325-331, 2017.
  • 5. P. Pachón, R. Castro, E. Macías, V. Compan, E. Puertas, “E. Torroja’s bridge: tailored experimental setup for SHM of a historical bridge with a reduced number of sensors”, Engineering Structures 162: 11-21, 2018.
  • 6. A. De-Castro, L. Sánchez-Aparicio, J. Sena-Cruz, D. González-Aguilera, “Integrating geomatic approaches, operational modal analysis, advanced numerical and updating methods to evaluate the current safety conditions of the historical Bôco bridge”, Construction and Building Materials 158: 961-984, 2018.
  • 7. G. Chio, E. Maldonado, I. Araujo, “Pruebas de vibración ambiental en puentes”. UIS Ingenierías 9: 55-68, 2010.
  • 8. R. Brincker, L. Zhang, P. Andersen, “Modal identification from ambient responses using frequency domain decomposition”, In IMAC 18: Proceedings of the International Modal Analysis Conference (IMAC): A. Moonis (Ed.), San Antonio, Texas, 2001.
  • 9. C. Gentile, N. Gallino, “Ambient vibration testing and structural evaluation of an historic suspension footbridge”, Advances in Engineering Software 39: 356-366, 2008.
  • 10. F. Magalhaes; E. Caetano, A. Cunha, O. Flamand, G. Grillaud, “Ambient and free vibration tests of the Millau viaduct: evaluation of alternative processing strategies”, Engineering Structures 45: 372-384, 2012.
  • 11. W. Ren, W. Zatar, I. Harik, “Ambient vibration based seismic evaluation of a continuous girder bridge”, Engineering Structures 26: 631-640, 2004.
  • 12. A. Shama, J. Mander, S. Chen, “Ambient vibration and seismic evaluation of a cantilever truss bridge”, Engineering Structures 23: 1281-1292, 2001.
  • 13. MIDAS Information Technology Co. Ltd. Midas User Manual, Seongnam, South Korea, 2016.
  • 14. Instituto Nacional de Vías (INVIAS). Código Colombiano de Puentes, CCP-14. Asociación Colombiana de Ingeniería Sísmica: Bogotá. 2014.
  • 15. A. Kerr, “On the Dynamic response of a prestressed beam”, Journal of Sound and Vibration 49: 569-573, 1976.
  • 16. A. Materazzi, M. Breccolotti, F. Ubertini, I. Venanzi, “Experimental modal analysis for assessing prestress force in PC brigdes: a sensitiviy study”, In 3rd International Operational Modal Analysis Conference: Curran Associates, Inc. (Ed.), Portonovo, Italy, 2009.
  • 17. M. Breccolotti, F. Ubertini, I. Venanzi, “Natural frequencies of prestressed concrete beams: theoretical prediction and numerical validation”, In 3rd International Operational Modal Analysis Conference: Curran Associates, Inc. (Ed.), Portonovo, Italy, 2009.
  • 18. American Association of State Highway and Transportation Officials, AASHTO. Standard Specifications for Highway Bridges. Washington, D.C AASHTO LRFD Bridge Design Specification, Sixth edition, 2012.
  • 19. Kinemetrics Inc. (2016). [On line]. Available: https://kinemetrics.com/.
  • 20. J. Leis, “Sampled signals and digital processing, digital signal processing using MATLAB for students and researchers”, Singapore, John Wile & Sons Inc., pp 383, 2011.
  • 21. Structural Vibration Solutions ARTeMIS Extractor, User’s Manual, Denmark.
  • 22. A. Altunişik, O. Karahasan, A. Genç, F. Okur, M. Günaydin, E. Kalkan, S. Adanur, “Modal parameter identification of RC frame under undamaged, damaged, repaired and strengthened conditions”, Measurement 124: 260-276, 2018.
  • 23. J. Malveiro, D. Ribeiro, C. Sousa, R. Calçada, “Model updating of a dynamic model of a composite steel-concrete railway viaduct based on experimental tests”, Engineering Structures 164: 40-52, 2018.
  • 24. R. Brincker, P. Andersen, “Ambient response analysis modal analysis for large structures”, In Sixth International Congress on Sound and Vibration: F. Jacobsen (Ed.), Copenhagen, Denmark, 1999.
  • 25. I. Gómez, “Caracterización dinámica experimental de puentes de hormigón simplemente apoyados a partir de pruebas de vibración ambiental”, Thesis, Industrial University of Santander, Bucaramanga, 2010.
  • 26. S. Gade, N. Møller, H. Herlufsen, H. Brüel, “Frequency domain techniques for operational modal analysis”, In 1st international Operational Modal Analysis Conference, Rune Brincker (Ed.), Copenhagen, Denmark, 2005.
  • 27. L. Vargas, “Propuesta de plan de monitoreo del comportamiento dinámico para la salud estructural del nuevo puente Gómez Ortiz”, Thesis, Industrial University of Santander, Bucaramanga, 2016.
  • 28. Y. Tian, J. Zhang, Q. Xia, P. Li, “Flexibility identification and deflection prediction of a three-span concrete box girder bridge using impacting test data”, Engineering Structures 146: 158-169, 2017.
  • 29. P. Moradipour, T. Chan, C. Gallage, “Benchmark studies for bridge health monitoring using an improved modal strain energy method”, Procedia Engineering 188: 158-169, 2017.
  • 30. C. Rainieri, F. Magalhaes, “Challenging aspects in removing the influence of environmental factors on modal parameter estimates”, Procedia Engineering 199: 2244-2249, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d951b28c-e2de-450a-bf84-38c9459846ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.