Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Global economic development and efforts to enhance overall quality of life yielded growth in the construction and building sector, increasing not only the demand for materials but also waste generation. Its efficient management should take full advantage of the exceptional properties of building materials. The presented work is the first reported study on possibly using waste rigid polyurethane (PUR) foam, commonly applied as thermal insulation, as particle-shaped low-density filler for manufacturing hybrid epoxy-basalt composites. It investigated the potential management of waste PUR foam by applying it as a functional filler to hybridize epoxy-basalt composites. Herein, 1, 2, 5, and 10 wt% PUR powder were introduced into the thermoset-based composites prepared using the vacuum bag method. A comprehensive analysis of mechanical and thermomechanical properties correlated with changes in the composite structure revealed the beneficial aspects of the waste filler addition associated with increased heat deflection temperature and mechanical damping ability. Introducing micrometric domains of the waste filler changed the composites' fracture character. It enabled maintaining the impact strength of composites containing up to 5 wt% of PUR powder at the level of unfilled epoxy resin. However, despite that, the incorporation of PUR powder unfavorably affected tensile and flexural performance, yielding a significant drop in moduli and strength.
Czasopismo
Rocznik
Tom
Strony
art. no. e57, 2024
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61‑138 Poznan, Poland
autor
- Institute of Applied Mechanics, Faculty of Mechanical Engineering, Poznan University of Technology, Jana Pawła II 24, 60‑965 Poznan, Poland
autor
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61‑138 Poznan, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02‑507 Warsaw, Poland
autor
- Institute of Materials Engineering, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Jana Pawła II 24, 60‑965 Poznan, Poland
autor
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61‑138 Poznan, Poland
autor
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02‑507 Warsaw, Poland
autor
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31‑155 Krakow, Poland
Bibliografia
- 1. Delogu M, Zanchi L, Dattilo CA, Pierini M. Innovative composites and hybrid materials for electric vehicles lightweight design in a sustainability perspective. Mater Today Commun. 2017;13:192-209. https://doi.org/10.1016/j.mtcomm.2017.09.012.
- 2. Dhakal H, Oluwarotimi IS. Sustainable composites for lightweight applications. Duxford: Elsevier, Woodhead Publishing Limited; 2021.
- 3. Kozioł M, Mazurkiewicz R. Evaluation of behavior of stitched epoxy-carbon fiber laminate under static bending conditions using simplified analysis of failure energy. Compos Theory Pract. 2019;19:112-8.
- 4. Sławski S, Szymiczek M, Kaczmarczyk J, Domin J, Świtoński E. Low velocity impact response and tensile strength of epoxy composites with different reinforcing materials. Materials (Basel). 2020;13:3059. https://doi.org/10.3390/ma13143059.
- 5. Formela K, Kurańska M, Barczewski M. Recent advances in development of waste-based polymer materials: a review. Polymers (Basel). 2022;14:1050. https://doi.org/10.3390/polym14051050.
- 6. Phunpeng V, Saensuriwong K, Kerdphol T. Comparative manufacturing of hybrid composites with waste graphite fillers for UAVs. Materials (Basel). 2022;15:6840. https://doi.org/10.3390/ma15196840.
- 7. Matykiewicz D, Mysiukiewicz O. Epoxy composites reinforced with natural fillers such as flax fiber and linseed cakes. Polimery. 2020;65:828-32. https://doi.org/10.14314/polimery.2020.11.11.
- 8. Moraczewski K, Karasiewicz T, Suwała A, Bolewski B, Szabliński K, Zaborowska M. Versatile polypropylene composite containing post-printing waste. Polymers (Basel). 2022;14:5335. https://doi.org/10.3390/polym14245335.
- 9. Diaz S, Ortega Z, McCourt M, Kearns MP, Benitez AN. Recycling of polymeric fraction of cable waste by rotational moulding. Waste Manag. 2018;76:199-206. https://doi.org/10.1016/j.wasman.2018.03.020.
- 10. Barnett PR, Gilbert CL, Penumadu D. Repurposed/recycled discontinuous carbon fiber organosheet development and composite properties. Compos Part C Open Access. 2021;4: 100092. https://doi.org/10.1016/j.jcomc.2020.100092.
- 11. La Rosa A, Blanco I, Banatao D, Pastine S, Bjorklund A, Cicala G. Innovative chemical process for recycling thermosets cured with Recyclamines® by converting bio-epoxy composites in reusable thermoplastic - an LCA study. Materials (Basel). 2018;11:353. https://doi.org/10.3390/ma11030353.
- 12. Fiore V, Scalici T, Di Bella G, Valenza A. A review on basalt fibre and its composites. Compos Part B Eng. 2015;74:74-94. https://doi.org/10.1016/j.compositesb.2014.12.034.
- 13. Vijaya Ramnath B, Junaid Kokan S, Niranjan Raja R, Sathyanarayanan R, Elanchezhian C, Rajendra Prasad A, Manickavasagam VM. Evaluation of mechanical properties of abaca-jute-glass fibre reinforced epoxy composite. Mater Des. 2013;51:357-66. https://doi.org/10.1016/j.matdes.2013.03.102.
- 14. Sanjay MR, Arpitha GR, Senthamaraikannan P, Kathiresan M, Saibalaji MA, Yogesha B. The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J Nat Fibers. 2019;16:600-12. https://doi.org/10.1080/15440478.2018.1431828.
- 15. Mohapatra DK, Deo CR, Mishra P. Investigation of glass fiber influence on mechanical characteristics of natural fiber reinforced polyester composites: an experimental and numerical approach. Compos Theory Pract. 2022;22:123-9.
- 16. Matykiewicz D. Biochar as an effective filler of carbon fiber reinforced bio-epoxy composites. Processes. 2020;8:724. https://doi.org/10.3390/pr8060724.
- 17. Dalbehera S, Acharya S. Effect of cenosphere addition on the mechanical properties of jute-glass fiber hybrid epoxy composites. J Ind Text. 2016;46:177-88. https://doi.org/10.1177/1528083715577936.
- 18. Arvinda Pandian CK, Siddhi Jailani H. Dynamic and vibrational characterization of natural fabrics incorporated hybrid composites using industrial waste silica fumes. Int J Polym Anal Charact. 2019;24:721-30. https://doi.org/10.1080/10236 66X.2019.1668141.
- 19. Singh QJ, Rajamurugan G. Vibration and tribological behaviour of flax/wire mesh/hemp composite reinforced with WCFC particles. J Manuf Process. 2022;77:525-38. https://doi.org/10.1016/j.jmapro.2022.03.036.
- 20. Deng Y, Dewil R, Appels L, Ansart R, Baeyens J, Kang Q. Reviewing the thermo-chemical recycling of waste polyurethane foam. J Environ Manag. 2021;278: 111527. https://doi.org/10.1016/j.jenvman.2020.111527.
- 21. Simon D, Borreguero AM, de Lucas A, Rodriguez JF. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag. 2018;76:147-71. https://doi.org/10.1016/j.wasman.2018.03.041.
- 22. Gadhave RV, Srivastava S, Mahanwar PA, Gadekar PT. Recycling and disposal methods for polyurethane wastes: a review, open. J Polym Chem. 2019;09:39-51. https://doi.org/10.4236/ojpch em.2019.92004.
- 23. Beran R, Zarybnicka L, Machova D. Recycling of rigid polyurethane foam: micro-milled powder used as active filler in polyurethane adhesives. J Appl Polym Sci. 2020;137:49095. https://doi.org/10.1002/app.49095.
- 24. Sonego M, Costa LC, Ambrosio JD. Flexible thermoplastic composite of Polyvinyl Butyral (PVB) and waste of rigid Polyurethane foam. Polimeros. 2015;25:175-80. https://doi.org/10.1590/0104-1428.1944.
- 25. Park J-S, Lim Y-M, Nho Y-C. Preparation of high density polyethylene/waste polyurethane blends compatibilized with polyethylene-graft-maleic anhydride by radiation. Materials (Basel). 2015;8:1626-35. https://doi.org/10.3390/ma8041626.
- 26. Mounanga P, Gbongbon W, Poullain P, Turcry P. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cem Concr Compos. 2008;30:806-14. https://doi.org/10.1016/j.cemconcomp.2008.06.007.
- 27. Dvorsky T, Vaclavik V, Simicek V, Brenek A. Research of the use of waste rigid polyurethane foam in the segment of lightweight concretes. Inżynieria Miner. 2015;36:51-6. https://doi.org/10.29227/IM-2015-02-09.
- 28. Wagner S, Schlummer M. Legacy additives in a circular economy of plastics: current dilemma, policy analysis, and emerging countermeasures. Resour Conserv Recycl. 2020;158: 104800. https://doi.org/10.1016/j.resconrec.2020.104800.
- 29. Kurańska M, Barczewski M, Uram K, Lewandowski K, Prociak A, Michałowski S. Basalt waste management in the production of highly effective porous polyurethane composites for thermal insulating applications. Polym Test. 2019;76:90-100. https://doi.org/10.1016/j.polymertesting.2019.02.008.
- 30. Treviso A, Van Genechten B, Mundo D, Tournour M. Damping in composite materials: properties and models. Compos Part B Eng. 2015;78:144-52. https://doi.org/10.1016/j.compositesb.2015.03.081.
- 31. Modal Impact Hammers TM-FRQ-ImpactHammers-1021. 2023. https://www.pcb.com/contentstore/MktgContent/LinkedDocuments/Force-Torque/TM-FRC-Impact-Hammers_Lowres.pdf. Accessed 6 Feb 2024.
- 32. Gade S, Herlufsen H. Digital filter techniques vs. FFT techniques for damping measurements (Damping Part I). Denmark: Narum; 1994.
- 33. Stisen B. Measurement of the complex modulus of elasticity of fibers and folios. In Complex Modulus of thin Fibers. Denmark: Narum; 1970.
- 34. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z. Fast Fourier transform ir characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors. 2010;10:684-96. https://doi.org/10.3390/s100100684.
- 35. Theophanides T (ed). Infrared spectroscopy - materials science, engineering and technology. InTech. 2013. https://doi.org/10.5772/2055.
- 36. Heng Z, Chen Y, Zou H, Liang M. Spectroscopic analysis of epoxy/rubber blends. In: Handb. epoxy blends, (ed.) Parameswaranpillai J, Hameed N, Pionteck J, Woo EM, Cham: Springer International Publishing; 2017. p 147-84. https:// doi.org/10.1007/978-3-319-40043-3_6.
- 37. Ruiz de Azua O, Agullo N, Arbusa J, Borros S. Improving glass transition temperature and toughness of epoxy adhesives by a complex room-temperature curing system by changing the stoichiometry. Polymers (Basel). 2023;15:252. https://doi.org/10.3390/polym15020252.
- 38. Fraga F, Vazquez EC, Rodriguez-Nunez E, Martinez-Ageitos JM. Curing kinetics of the epoxy system diglycidyl ether of bisphenol A/isophoronediamine by Fourier transform infrared spectroscopy. Polym Adv Technol. 2008. https://doi.org/10.1002/pat.1178.
- 39. El Didamony H, Assal HH, El Sokkary TM, Abdel Gawwad HA. Kinetics and physico-chemical properties of alkali activated blast-furnace slag/basalt pastes. HBRC J. 2012;8:170-6. https://doi.org/10.1016/j.hbrcj.2012.10.002.
- 40. Tudorachi N, Mustata F. Curing and thermal degradation of diglycidyl ether of bisphenol A epoxy resin crosslinked with natural hydroxy acids as environmentally friendly hardeners. Arab J Chem. 2020;13:671-82. https://doi.org/10.1016/j.arabjc.2017.07.008.
- 41. Mouritz AP, Gibson AG. Fire properties of polymer composite materials. Dordrecht: Springer; 2006. https://doi.org/10.1007/978-1-4020-5356-6.
- 42. Kumar KV, Pavendhan R, Subramaniyan GGR, Loganathan TG. Effect of bio waste (conch shell) particle dispersion on the performance of GFRP composite. J Mater Res Technol. 2020;9:7123-35. https://doi.org/10.1016/j.jmrt.2020.04.042.
- 43. Pawłowska P, Gawdzińska K, Bryll K, Pijanowski M, Chybowski L. Dobór materiału osnowy na hybrydowe materiały kompozytowe z udziałem recyklatów. Przetwórstwo Tworzyw. 2017;23:411-6.
- 44. Tita V, de Carvalho J, Vandepitte D. Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches. Compos Struct. 2008;83:413-28. https://doi.org/10.1016/j.compstruct.2007.06.003.
- 45. Anderson TL. Fracture mechanics. Boca Raton: CRC Press; 2017. https://doi.org/10.1201/9781315370293.
- 46. Srinivasa V, Shivakumar V, Nayaka V, Jagadeeshaiaih S, Seethram M, Shenoy R, Nafidi A. Fracture morphology of carbon fiber reinforced plastic composite laminates. Mater Res. 2010;13:417-24. https://doi.org/10.1590/S1516-14392010000300022.
- 47. Sałasińska K, Barczewski M, Aniśko J, Hejna A, Celiński M. Comparative study of the reinforcement type effect on the thermomechanical properties and burning of epoxy-based composites. J Compos Sci. 2021;5:89. https://doi.org/10.3390/jcs5030089.
- 48. Jalalvand M, Czel G, Fuller JD, Wisnom MR, Canal LP, Gonzalez CD, LLorca J. Energy dissipation during delamination in composite materials - an experimental assessment of the cohesive law and the stress-strain field ahead of a crack tip. Compos Sci Technol. 2016;134:115-24. https://doi.org/10.1016/j.compscitech.2016.08.001.
- 49. Švehlova V, Polouček E. About the influence of filler particle size on toughness of filled polypropylene. Angew Makromol Chem. 2003;153:197-500. https://doi.org/10.1002/apmc.1987.051530115.
- 50. Deng S, Hou M, Ye L. Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data. Polym Test. 2007;26:803-13. https://doi.org/10.1016/j.polymertesting.2007.05.003.
- 51. Pogany GA. The α relaxation in epoxy resins. Eur Polym J. 1970;6:343-53. https://doi.org/10.1016/0014-3057(70)90167-9.
- 52. Li C, Wu G, Xiao F, Wu C. Damping behavior of sandwich beam laminated with CIIR/petroleum resins blends by DMA measurement. J Appl Polym Sci. 2007;106:2472-8. https://doi.org/10.1002/app.25450.
- 53. Jyoti J, Singh BP, Arya AK, Dhakate SR. Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv. 2016;6:3997-4006. https://doi.org/10.1039/C5RA25561A.
- 54. Einstein A, Furth R. Investigations on the theory of Brownian movement. New York: Dover Publications; 1956.
- 55. Brostow W, Hagg Lobland HE, Narkis M. Sliding wear, viscoelasticity, and brittleness of polymers. J Mater Res. 2006;21:2422-8. https://doi.org/10.1557/jmr.2006.0300.
- 56. Brostow W, Hagg Lobland HE. Brittleness of materials: implications for composites and a relation to impact strength. J Mater Sci. 2010;45:242-50. https://doi.org/10.1007/s10853-009-3926-5.
- 57. Brylka B, Schemmann M, Wood J, Bohlke T. DMA based characterization of stiffness reduction in long fiber reinforced polypropylene. Polym Test. 2018;66:296-302. https://doi.org/10.1016/j.polymertesting.2017.12.025.
- 58. Cassidy PE, McCarthy DK. Solution polymerizations of epoxy-tetrahydrophthalic anhydride and its utilization in various epoxy systems. J Appl Polym Sci. 1968;12:1239-52. https://doi.org/10.1002/app.1968.070120522.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d95100b4-7471-40ae-ad47-33fcc61f0e25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.