PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Tribological and Mechanical Properties of Biodegradable AZ91 Alloy Produced by Cold Chamber High Pressure Casting Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, AZ91 Magnesium alloy is produced by cold chamber high pressure die casting (HPDC) method. Different combinations of the cold chamber HPDC process parameters were selected as; in-mold pressure values of 1000 bar and 1200 bar, the gate speed of 30 m/s and 45 m/s, the casting temperatures of 640°C and 680°C. In addition, the test samples were produced by conventional casting method. Tensile test, hardness test, dry sliding wear test and microstructure analysis of samples were performed. The mechanical properties of the samples produced by the cold chamber HPDC and the conventional casting method were compared. Using these parameters; the casting temperature 680°C, in-mold pressure 1000 bar and the gate speed 30 m/s, the highest tensile strength and the hardness value were obtained. Since the cooling rate in the conventional casting method is slower than that of the cold chamber HPDC method, high mechanical properties are obtained by the formation of a fine-grained structure in the cold chamber HPDC method. In dry sliding wear tests, it was observed that there was a decrease in friction coefficient and less material loss with the increase of hardness values of the sample produced by the cold chamber HPDC method.
Twórcy
  • Ahi Evran University, Mechanical Engineering Department, 40100 Kirsehir, Turkey
autor
  • Ahi Evran University, Mechanical Engineering Department, 40100 Kirsehir, Turkey
  • Eskisehir Technical University, Vocational School of Transportation, 26470, Eskisehir, Turkey
autor
  • Eskisehir Osmangazi University, Mechanical Engineering Department, 26480 Eskisehir, Turkey
Bibliografia
  • [1] M.A. Ashraf, Z. Liu, W.X. Peng, N. Yoysefi, Progress in Organic Coatings 136, 105296 (2019). DOI: 10.1016/j.porgcoat.2019.105296
  • [2] B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina, Surface and Coatings Technology 309, 1023-1032 (2017). DOI: 10.1016/j.surfcoat.2016.10.041
  • [3] M. Gobara, M. Shamekh, Anti-Corrosion Meth & Material 61 (5), 319-327 (2014). DOI: 0.1108/ACMM-04-2013-1258
  • [4] Y. Xin, C. Liu, X. Zhang, G. Tang, X. Tian, P. K. Chu, 2007, J. Mater. Res. 22 (7), 2004-2011 (2007). DOI: 10.1557/jmr.2007.0233
  • [5] Q. Zhang, H. Zhang, Anti-Corrosion Meth & Material 66 (3), 264-273 (2019). DOI: 10.1108/ACMM-07-2018-1964
  • [6] P.B. Srinivasan, C. Blawert, W. Dietzel, Materials Characterization 60 (8), 843-847 (2009). DOI: 10.1016/j.matchar.2009.01.014
  • [7] P.B. Srinivasan, C. Blawert, W. Dietzel, Wear 266 (11-12), 1241-1247 (2009). DOI: 10.1016/j.wear.2009.03.013
  • [8] W. Liu, B. Jiang, Q. Yang, J. Tao, B. Liu, F. Pan, Progress in Natural Science: Materials International 29 (4), 453-456 (2019). DOI: 10.1016/j.pnsc.2019.07.002
  • [9] D. Mehra, M.M. Mahapatra, S.P. Harsha, Ind. Lubrication andTribology 70 (2), 256-263 (2018). DOI: 10.1108/ILT-01-2018-0018
  • [10] A. Bordbar-Khiabani, B. Yarmand, M. Mozafari, Materials Letters 258, 126779 (2020) DOI: 10.1016/j.matlet.2019.126779
  • [11] S. Candan, M. Unal, E. Koc, Y. Turen, E. Candan, Journal of Alloys and Compounds 509 (5), 1958-1963 (2011). DOI: 10.1016/j.jallcom.2010.10.100
  • [12] Y.Z. Lü, Q.D. Wang, W.J. Ding, X.Q. Zeng, Y.P. Zhu, Materials Letters 44 (5), 265-268 (2000). DOI: 10.1016/S0167-577X(00)00041-0
  • [13] P. Zak, J. Lelito, J. Suchy, W. Krajewski, K. Haberl, P. Schumacher, World Journal of Engineering 8 (3), 277-282 (2011). DOI: 10.1260/1708-5284.8.3.277
  • [14] S. Jayabharathy, P. Mathiazhagan, Materials Today Proceedings, DOI: 10.1016/j.matpr.2019.09.142
  • [15] Z. Yang, A. Ma, H. Liu, D. Song, Y. Wu, Y. Yuan, J. Jiang, J. Sun, “Managing Strength and Ductility in AZ91 Magnesium Alloy through ECAP Combined with Prior and Post Aging Treatment", Materials Characterization 152, 213-222 (2019). DOI: 10.1016/j.matchar.2019.04.022
  • [16] J. Majhi, A.K. Mondal, Microstructure and Impression Creep Characteristics of Squeeze-Cast AZ91 Magnesium Alloy Containing Ca and/or Bi, Materials Science and Engineering: A, 744, 691-703 (2019). DOI: 10.1016/j.msea.2018.12.067
  • [17] P.J. Blau, M. Walukas, Tribology International 33 (8), 573-579 (2000). DOI: 10.1016/S0301-679X(00)00108-0
  • [18] H. Chen, A.T. Alpas, Wear 246 (1-2), 106-116 (2000). DOI: 10.1016/S0043-1648(00)00495-6
  • [19] J. Sun, Z. Yang, H. Liu, J. Han, Y. Wu, X. Zhuo, D. Song, J. Jiang, A. Ma, G. Wu, Materials Science and Engineering: A, 759, 703-707, (2019). DOI: 10.1016/j.msea.2019.05.093
  • [20] Y. Xia, Z. Jia, J. Jia, Advanced Tribology, 896-898 (2009). DOI: 10.1007/978-3-642-03653-8_306
  • [21] H. Hoche, H.-J. Schroeder, H. Scheerer, E. Broszeit, C. Berger, Advanced Enginnering Materials 1, 10 (2002). DOI: 10.1002/ 1527-2648(20020212)4:1/2<42::AID-ADEM42>3.0.CO;2-E
  • [22] R. Arslan, Master’s Thesis, Determination of Mechanical Properties of Magnesium Alloys Produced by Cold Chamber Die Casting, Kırşehir Ahi Evran Üniversitesi, Kırşehir/Turkey (2019).
  • [23] V.D. Majstorovic, N. Durakbasa, Proceedings of the 12th International Conference on Measurement and Quality Control - Cyber Physical Issue: IMEKO TC 14 2019, Springer International Publishing, Cham. (2019)
  • [24] B.L. Mordike, T. Ebert, Materials Science and Engineering A, 302, 37-45 (2001). DOI: 10.1016/S0921-5093(00)01351-4
  • [25] E. Gutman, Y. Unigovski, M. Levkovich, Z. Koren, E. Aghion, M. Dangur, Materials Science and Engineering: A, 234-236, 880-883 (1997). DOI: 10.1016/S0921-5093(97)00363-8
  • [26] I. Vicario, I. Crespo, D. Val, U. Weiss, D. Cao, I. Martinez de la pera, J.M. Sanchez, J. of Materi. Eng. and Perform. 28 (7), 3935-3940 (2019). DOI: 10.1007/s11665-019-03981-9
  • [27] P. Sharifi, J. Jamali, K. Sadayappan, J.Y. Wood, Journal of Materials Science & Technology 34 (2), 324-334 (2018). DOI: 10.1016/j.jmst.2016.09.004
  • [28] S. Yazman, U. Koklu, L. Urtekin, S. Morkavuk, L. Gemi, Journal of Manufacturing Processes 57, 136-152 (2020). DOI: 10.1016/j.jmapro.2020.05.050
  • [29] C.H. Cáceres, W.J. Poole, A.L. Bowles, C.J. Davidson, Materials Science and Engineering: A, 402 (1-2), 269-277 (2005). DOI: 10.1016/j.msea.2005.04.024
  • [30] C.H. Cáceres, C.J. Davidson, J.R. Griffiths, C.L. Newton, Materials Science and Engineering: A, 325 (1-2), 344-355 (2002). DOI: 10.1016/S0921-5093(01)01467-8
  • [31] ASM International, Metallography and Microstructures, American Society for Metals, Metals Park, Ohio (2004).
  • [32] M.D. Nave, A.K. Dahle, D.H. StJohn, Magnesium Technology 2000, 233-242 (2000). DOI: 10.1002/9781118808962.ch33
  • [33] D.G. Leo Prakash, D. Regener, W.J.J. Vorster, Journal of Alloys and Compounds 470 (1-2), 111-116 (2009). DOI: 10.1016/j.jallcom.2008.02.051
  • [34] Y. Wei, L. Hou, L. Yang, B. Xu, M. Kozuka, H. Ichinose, Journal of Materials Processing Technology 209 (7), 3278-3284 (2009). DOI: 10.1016/j.jmatprotec.2008.07.034
  • [35] C.D. Lee, J. Mater. Sci. 42 (24), 10032-10039 (2007). DOI: 10.1007/s10853-007-2003-1
  • [36] I.J. Polmear, J.F. Nie, M. Qian, D. StJohn, Light Alloys: Metallurgy of the Light Metals, Butterworth-Heinemann, an imprint of Elsevier, Oxford (2017).
Uwagi
1. The production of magnesium alloy specimens included in this study was supported by the Kirsehir Ahi Evran University BAP project number MMF. A3.17.003 and we thank you for their support.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d94f65af-a0d1-416a-bea6-d6739f0b4d77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.