PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CBRN threats to Ukraine during the russian aggression: mitigating gamma radiation hazards-innovative countermeasures and decontamination strategies in the context of potential destruction of the Zaporizhzhia Nuclear Power Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zagrożenia CBRN na Ukrainie podczas rosyjskiej agresji: łagodzenie zagrożeń związanych z promieniowaniem gamma – środki zaradcze i strategie dekontaminacji w kontekście potencjalnego zniszczenia Elektrowni Jądrowej w Zaporożu
Języki publikacji
EN
Abstrakty
EN
Abstract This paper investigates potential countermeasures to mitigate the disastrous effects of gamma radiation exposure in the event of a possible destruction of the Zaporizhzhia Nuclear Power Plant, Ukraine’s largest nuclear facility, due to escalating conflicts. The potential destruction could result in an unparalleled release of gamma radiation, posing significant threats to human health and the environment. By examining the radiological dangers of gamma radiation, past case studies of radiation exposure, current countermeasures, as well as the limitations and challenges of these strategies, we may provide a comprehensive overview of the multidimensional nature of this potential crisis. The paper also explores innovative approaches in decontamination under resource constraints, focusing on dry decontamination, the use of alternative fluids, and the effective management of decontamination effluents.
PL
Niniejsza praca bada środki zaradcze mające na celu złagodzenie skutków ekspozycji na promieniowanie gamma w przypadku ewentualnego zniszczenia Elektrowni Jądrowej w Zaporożu, największej instalacji jądrowej na Ukrainie. Potencjalne zniszczenie mogłoby skutkować uwolnieniem promieniowania gamma, stanowiąc znaczące zagrożenie dla zdrowia ludzkiego i środowiska. Badając radiologiczne zagrożenia promieniowaniem gamma, przeszłe przypadki ekspozycji na promieniowanie, obecne środki zaradcze oraz ograniczenia i wyzwania związane z tymi strategiami, dostarczamy kompleksowy przegląd wielowymiarowej natury tego potencjalnego kryzysu. Praca analizuje również innowacyjne podejścia do dekontaminacji przy ograniczonych zasobach, koncentrując się na dekontaminacji suchej, użyciu alternatywnych płynów oraz efektywnym zarządzaniu zanieczyszczeniami powstałymi w wyniku dekontaminacji.
Rocznik
Tom
Strony
143--164
Opis fizyczny
Bibliogr. 74 poz.,
Bibliografia
  • 1. Gamma Radiation basics, Environmental Protection Agency, https://www.epa.gov/radiation/radiation-basics.
  • 2. Cember, H., & Johnson, T.E., (2008). Introduction to Health Physics (4th ed.). McGraw-Hill.
  • 3. Hall, E. J., & Giaccia, A.J., (2012). Radiobiology for the Radiologist (7th ed.). Lippincott Williams & Wilkins.
  • 4. Radiation Shielding, U.S. Nuclear Regulatory Commission, https://www.nrc.gov/ about-nrc/radiation/health-effects/radiation-basics.html.
  • 5. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., & Mazur, M., (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1–40.
  • 6. Cardis, E., Vrijheid, M., Blettner, M., Gilbert, E., Hakama, M., Hill, C. et al., (2007). The 15-Country Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry: estimates of radiation-related cancer risks. Radiation Research, 167(4), 396–416.
  • 7. Steinhauser, G., Brandl, A., & Johnson, T.E., (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Science of the Total Environment, 470, 800–817.
  • 8. Hosoda, M., Tokonami, S., Sorimachi, A., Monzen, S., Osanai, M., Yamada, M. et al., (2011). The time variation of dose rate artificially increased by the Fukushima nuclear crisis. Scientific Reports, 1, 87.
  • 9. Glasstone, S., & Dolan, P. J., (1977). The Effects of Nuclear Weapons. United States Department of Defense.
  • 10. Oughterson, A.W., & Warren, S., (1956). Medical effects of the atomic bomb in Japan. McGraw-Hill.
  • 11. Zaporizhzhia Nuclear Power Plant, https://en.wikipedia.org/wiki/Zaporizhzhia_Nuclear_Power_Plant.
  • 12. Ratnaweera, H., Pivovarov, O.A., (eds.) (2019). Physical and cyber safety in critical water infrastructure. In: NATO Advanced Research Workshop on Physical and Cyber Safety in Critical Water Infrastructure, Amsterdam: IOS Press.
  • 13. Daily Report: Central Eurasia, (1995). USA: The Service.
  • 14. Burlakova, E.B., Naidich, V.I., (2006). 20 Years After the Chernobyl Accident: Past, Present and Future. Hauppauge: Nova Publishers, 358.
  • 15. Pavel P. Povinec, Katsumi Hirose, Michio Aoyama, Yutaka Tateda (2021) ”Fukushima Accident: 10 Years After” Elsevier, 23 July 2021, 574.
  • 16. IAEA, (2006). Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Vienna: International Atomic Energy Agency.
  • 17. Kashparov, V.A., Lundin, S.M., Zvarych, S.I., Yoshchenko, V.I., Levchuk, S.E., Khomutinin, Y.V., Maloshtan, I.M., Protsak, V.P. (2003). Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ., 317(1-3):105–19. DOI: 10.1016/S0048-9697(03)00336-X.
  • 18. Cardis, E., Krewski, D., Boniol, M., Drozdovitch, V., Darby, S., Gilbert, E., . . . Vrijheid, M., (2006). Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident. International Journal of Cancer, 119(6), 1224–1235.
  • 19. Cardis, E., Krewski, D., Boniol, M., Drozdovitch, V., Darby, S.C., Gilbert, E.S., Akiba, S., Benichou, J., Ferlay, J., Gandini, S., Hill, C., Howe, G., Kesminiene, A., Moser, M., Sanchez, M., Storm, H., Voisin, L., Boyle, P., (2008). Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. American Journal of Epidemiology, 168(6), 620–631.
  • 20. Eckerman, K.F., Endo, A., (2009). MIRD: Radionuclide Data and Decay Schemes. Reston, VA: Society of Nuclear Medicine, 2008.
  • 21. Kathren, R.L., (1996). Pathway to a paradigm: the linear non-threshold dose-response model in historical context. The evolution of radiation protection philosophy. Health Physics, 70(3), 261–279.
  • 22. World Health Organization, (2011). Guidelines for iodine prophylaxis following nuclear accidents: update 1999. World Health Organization.
  • 23. Wojcik, A., (2002). The Medical Basis for Radiation-Accident Preparedness. The Clinical Care of Victims, Proceedings of the Fourth International REACT/TS Conference on the Medical Basis for Radiation-Accident Preparedness. Radiation Research, 158(1), 125.
  • 24. Otake, M., Schull, W.J., (1998). Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. International Journal of Radiation Biology, 74(2), 159-171.
  • 25. Grant, E.J., Brenner, A., Sugiyama, H., Sakata, R., Sadakane, A., Utada, M., Cahoon, E.K., Milder, C.M., Soda, M., Cullings, H.M., Preston, D.L., Mabuchi, K., Ozasa, K., (2017). Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiation Research, 187(5), 513–537.
  • 26. Medvedev, Z., (1990). The legacy of Chernobyl. New York: Norton.
  • 27. Cardis, E., Kesminiene, A., Ivanov, V., Malakhova, I., Shibata, Y., Khrouch, V., Drozdovitch, V., Maceika, E., Zvonova, I., Vlassov, O., Bouville A., Goulko, G., Hoshi, M., Abrosimov, A., Anoshko, J., Astakhova, L., Chekin, S., Demidchik, E., Galanti, R., Ito, M., Korobova, E., Lushnikov, E., Maksioutov, M., Masyakin, V., Nerovnia, A., Parshin, V., Parshkov, E., Piliptsevich, N., Pinchera, A., Polyakov, S., Shabeka, N, Suonio, E., Tenet, V., Tsyb, A., Yamashita, S., Williams, D., (2005). Risk of thyroid cancer after exposure to 131I in childhood. Journal of the National Cancer Institute, 97(10), 724–732.
  • 28. International Atomic Energy Agency, (1988). The radiological accident in Goiania. IAEA.
  • 29. Steinhauser, G., Brandl, A., Johnson, T.E., (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Science of The Total Environment, 470, 800–817.
  • 30. Zeeb, H., & Shannoun, F., (eds.). (2009). WHO handbook on indoor radon: a public health perspective. World Health Organization.
  • 31. Becker, S.M., (2004). Emergency communication and information issues in terrorist events involving radioactive materials. Biosecurity and bioterrorism: biodefense strategy, practice, and science, 2(3), 195–207.
  • 32. Hofman, D., Monte. L., (2011). Computerised Decision Support Systems for the management of freshwater radioecological emergencies: assessment of the state-of-the-art with respect to the experiences and needs of end-users. Journal of Environmental Radioactivity, 102, 2, 119–127.
  • 33. McFee, R.B., & Leikin, J.B., (2003). Death by polonium-210: lessons learned from the murder of former Soviet spy Alexander Litvinenko. Clinical Toxicology, 46(9), 819–822.
  • 34. Becker, S.M. (2007). Communicating risk to the public following radiological incidents. Journal of radiological protection, 27(1), 17.
  • 35. Wheatley, S., Sovacool, B., & Sornette, D., (2017). Of Disasters and Dragon Kings: A Statistical Analysis of Nuclear Power Incidents & Accidents. Risk Analysis, 37(1), 99–115.
  • 36. Rubin, G.J., Amlôt, R., Page, L., & Wessely, S., (2010). Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: cross sectional telephone survey. BMJ, 339, b2651.
  • 37. Wiwanitkit V., (2011). Nuclear detonation, thyroid cancer and potassium iodide prophylaxis. Indian journal of endocrinology and metabolism, 15(2), 96–98.
  • 38. Devell, L., Guntay, S., & Powers, D., (1995). The Chernobyl reactor accident source term: development of a consensus view. In: Proceedings of the CSNI specialist meeting on reactor accident source terms.
  • 39. Havenaar, J.M., Rumyantzeva, G.M., Van den Brink, W., Poelijoe, N.W., van den Bout, J., van Engeland, H., & Koeter, M.W., (1997). Long-term mental health effects of the Chernobyl disaster: an epidemiologic survey in two former Soviet regions. American Journal of Psychiatry, 154(11), 1605–1607.
  • 40. Havenaar, J.M., Rumyantzeva, G.M., (2006). Long-Term Mental Health Effects of the Chernobyl Disaster: An Epidemiologic Survey in Two Former Soviet Regions. https://doi. org/10.1176/ajp.154.11.1605.
  • 41. Raskob, W., & Landman, C., (2010). The IMEKO TC8 Workshop on Metrological Infrastructure.
  • 42. Bandosz, T.J., (2012). Activated Carbon Surfaces in Environmental Remediation. Elsevier.
  • 43. Rintamaa, R., Aho-Mantila, I., (2011). Plant life management and modernisation: Research challenges in the EU. Nuclear Engineering and Design. 241, 9, 3389–3394.
  • 44. Kovacs. P., (2006). Impacts of nuclear power plant life management and long-term operation. NEA News, 24, 2.
  • 45. Severa, J., Bár, J., (1991). Handbook of Radioactive Contamination and Decontamination, Elsevier.
  • 46. Kadadou, D., Said, E., (2023). Research advances in nuclear wastewater treatment using conventional and hybrid technologies: Towards sustainable wastewater reuse and recovery. Journal of Water Process Engineering, 2, 103604.
  • 47. Bish, D., Ming, D., (2018). Natural zeolites: occurrence, properties, applications. Berlin: Walter de Gruyter GmbH & Co KG, 668.
  • 48. Bhattacharyya, K.G., Gupta, S.S., (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Advances in colloid and interface science, 140(2), 114–131.
  • 49. U.S. Department of Energy, (2002). Radiological Control Manual. DOE M 440.1-1.
  • 50. National Council on Radiation Protection and Measurements, (2005). Key Elements of Preparing Emergency Responders for Nuclear and Radiological Terrorism. NCRP Commentary No. 19.
  • 51. I.Sicilia, S. Aparicio, M. González, (2022). Radon Transport, Accumulation Patterns, and Mitigation Techniques Applied to Closed Spaces. Atmosphere, 13(10), 1692.
  • 52. K. Archibald, R. Demmer, M. Argyle (1999). Cleaning and decontamination using strippable and protective coatings at the idaho national engineering and environmental laboratory. WM’99 CONFERENCE, FEBRUARY 28–MARCH 4.
  • 53. Kohli, R., (2013). Developments in Surface Contamination and Cleaning Methods of Cleaning and Cleanliness Verification, pp. 139–161.
  • 54. International Atomic Energy Agency. (2003). Training in radiation protection and the safe use of radiation sources. Safety reports series, (20), 95–102.
  • 55. Gregor, F., Chockie, A., (2006). Aging Management and Life Extensionin the US Nuclear Power Industry. Seattle: Chockie Group International.
  • 56. National Council on Radiation Protection and Measurements, (2010). Management of Persons Contaminated with Radionuclides: Handbook. NCRP Report No. 161, Vol. II.
  • 57. International Atomic Energy Agency, (2006). Technologies for the remediation of radioactive contaminated sites. Radiation Safety Reports Series, 40, 68–76.
  • 58. International Atomic Energy Agency, (1998). New methods and techniques for decontamination in maintenance or decommissioning operations.
  • 59. Bonnesen, V., Moyer, B.A., Presley, D.J., (1996). Alkaline-Side Extraction of Technetium from Tank Waste Using Crown Ethers and Other Extractants. DOI:10.2172/257317.
  • 60. Liu, S., He, Y., Xie, H., Ge, Y., (2022). Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities. Sustainability, 14(7), 4021.
  • 61. Amirabadi, E.A., Salimi, M., Ghal-Eh, N., Etaati, G.R., Asadi, H., (2013). Study of Neutron and Gamma Radiation Protective Shield. International Journal of Innovation and Applied Studies, 3, 1079–1085.
  • 62. Kim, H., Park, K., (2014). Decontamination of Heavy Metal in Soil by Using Supercritical Carbon Dioxide. Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 29–30, 2014.
  • 63. International Atomic Energy Agency. (2003). Medical management of radiological casualties. Health Physics, 85(1), 52–57.
  • 64. United States Environmental Protection Agency. (2006). Manual of Protective Action Guides and Protective Actions for Nuclear Incidents.
  • 65. Koenig, K., Goans, R., Hatchett, R., Mettler, F., Jr, (2005). Medical treatment of radiological casualties: current concepts. Ann Emerg Med., 2005. DOI: 10.1016/j.annemergmed.2005.01.020.
  • 66. Silvestri, L., (2012). Selective decontamination of the digestive tract: an update of the evidence. HSR Proc Intensive Care Cardiovasc Anesth., 2012; 4(1): 21–29.
  • 67. International Atomic Energy Agency, (2020). Medical Management of Radiation Injuries. Safety Reports Series, No. 101.
  • 68. Kamiya, K., Ozasa, K., Akiba, S., Niwa, O., (2015). Long-term effects of radiation exposure on health, Lancet, 386, 9992, 469–478.
  • 69. Rau, E.H., Alaimo, R.J., Ashbrook, P.C., Austin, S.M., Borenstein, N., (2000). Minimization and management of wastes from biomedical research. Environ Health Perspect., 108, 6.
  • 70. Valecia, L., (2012). Radioactive waste management in nuclear decommissioning projects. Nuclear Decommissioning Planning, Execution and International Experience Woodhead Publishing Series in Energy, pp. 375–415.
  • 71. Klochkova, N.V., Savel’ev, A.A., Pozdnyakova, N.Yu., (2019). Investigation of Americium Sorption from Model Liquid Radwaste Solutions Using TODGA-Based SolidPhase Extractant. Atomic Energy, 127, 40–44.
  • 72. Davydov, D., Davydov, Y., Toropov, I.G. et al., (2003). Development of a method for regeneration of spent electrochemical decontamination solution on the basis of data on speciation of metal ions in solution. Czechoslovak Journal of Physics, 53, A699–A704.
  • 73. Faiz, Z., Bouih, A., Fakhi, S., (2014). Improvement of conditions for the radioactive ion exchange resinimmobilization in the cement Portland. J. Mater. Environ. Sci., 6(1) (2015), 289–296.
  • 74. Ojovan, M.I., (2011). Radioactive waste characterization and selection of processing technologies. Handbook of Advanced Radioactive Waste Conditioning Technologies Woodhead Publishing Series in Energy 2011, pp. 1–16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d94ebb01-0fde-439d-8d02-2ae6048a621c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.