PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of sintering modes on the crystal lattice parameters and the morphology of the ZrO2–nY2O3 (n = 3–8 mol%) ceramic microstructure components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this work is to study the effect of sintering modes, especially the sintering temperature, on the crystal lattice parameters and the morphology of the ZrO2–nY2O3 (n = 3–8 mol%) ceramic microstructure components in relation to corresponding fracture micromechanisms. Design/methodology/approach: The series of ZrO2–nY2O3 (n = 3–8 mol%) ceramics were sintered in an argon atmosphere at temperatures 1450°C, 1500°C, 1550°C, and 1600°C. The cross-sectional surfaces of samples were prepared for microstructure analysis using a grinding and polishing Struers Tegramin machine. Young’s ceramics modulus values were determined using an ultrasonic flaw detector Panametrics EPOCH III 2300. The samples’ density and porosity were determined by the Archimedes’ method. Scanning electron microscopes Hitachi SU3900 and Carl Zeiss EVO-40XVP were used to analyse the microstructure and fracture surface morphology of samples. For estimating chemical compositions in an energy-dispersive X-ray spectroscopy mode, an INCA ENERGY 350 spectrometer was utilized. Microhardness measurement was performed on a NOVOTEST TC-MKB1 microhardness tester. The fracture toughness of the material was estimated using a single-edge notch beam (SENB) test and the Vickers indentation test. Both the flexural strength and SENB tests were performed under three-point bending using a UIT STM 050 test machine. All mechanical tests were carried out in air at a temperature of 20°C. Findings: Optimal sintering modes for a variety of YSZ ceramic compositions are found, taking into account the combined effect of the sintering temperature and a percentage of Y2O3, which resulted in a specified balance of cubic, tetragonal, and monoclinic zirconia phases, an optimal microstructure features, and the implementation of high-energy fracture micromechanisms responsible for high strength and fracture toughness of YSZ ceramics. Research limitations/implications: To study the behaviour of YSZ ceramics in the operating atmosphere, their microhardness, flexural strength, and fracture toughness should be evaluated under the operating temperature and pressure conditions. Practical implications: Based on the research performed, it is possible to design the microstructure of YSZ ceramic with the necessary physical and mechanical properties to provide high reliability of ceramic products in various industry branches. Originality/value: The balance of cubic, tetragonal, and monoclinic zirconia phases, as well as the crystal lattice parameters change, was determined for YSZ ceramics stabilized with the various amounts of yttria, and it was linked to their mechanical behaviour; the Vickers indentation method and SENB method were used to estimate crack growth resistance of YSZ ceramics, and an appropriate fracture micromechanism was found.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
autor
  • Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
  • Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
autor
  • Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
autor
  • Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
autor
  • Łukasiewicz Research Network–Krakow Institute of Technology, ul. Zakopiańska 73, 30-418, Kraków, Poland
autor
  • Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
  • Physics Department, Pryazovskyi State Technical University, 49044 Dnipro, Ukraine
  • Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
  • Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
  • Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
Bibliografia
  • [1] J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang, Sol-gel preparation and photoluminescence properties of tetragonal ZrO2:Y3+, Eu3+ nanophosphors, Optical Materials 35/2 (2012) 274-279. DOI: https://doi.org/10.1016/j.optmat.2012.08.016
  • [2] M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, A. Keyvani, Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100°C and 1300°C for advanced TBC applications, Ceramics International 45/6 (2019) 7344-7350. DOI: https://doi.org/10.1016/j.ceramint.2019.01.018
  • [3] S. Liu, J. Zhang, Y. Tian, J. Sun, P. Huang, J. Li, G. Han, Preparation of Bi2O3–YSZ and YSB–YSZ composite powders by a microemulsion method and their performance as electrolytes in a solid oxide fuel cell, Materials 16/13 (2023) 4673. DOI: https://doi.org/10.3390/ma16134673
  • [4] S. Liu, J. Wang, Y. Chen, Z. Song, B. Han, H. Wu, T. Zhang, M. Liu, Tetragonal nanosized zirconia: Hydrothermal synthesis and its performance as a promising ceramic reinforcement, Inorganics 11/5 (2023) 217. DOI: https://doi.org/10.3390/inorganics11050217
  • [5] A.K. Lakshya, K.K. Jha, C. Bhardwaj, A. Chowdhury, Attaining translucency in binder/additive-free, nanograined, tetragonal 1.5 mol.% yttria-stabilized zirconia ceramics, Materialia 34 (2024) 102075. DOI: https://doi.org/10.1016/j.mtla.2024.102075
  • [6] S.G. Giniyatova, A.L. Kozlovskiy, R.I. Shakirzyanov, N.O. Volodina, D.I. Shlimas, D.B. Borgekov, Structural, dielectric, and mechanical properties of high-content cubic zirconia ceramics obtained via solid-state synthesis, Applied Sciences 13/19 (2023) 10989. DOI: https://doi.org/10.3390/app131910989
  • [7] A. Unnadkat, L. Kirby, S. Kulanthaivel, O. Rysavy, A. Tsujimoto, X. Song, E.C. Teixeira, The effect of sintering on zirconia manufactured via suspension-enclosing projection stereolithography for dental applications: an in vitro study, Materials 17/1 (2023) 14. DOI: https://doi.org/10.3390/ma17010014
  • [8] P. Jeevankumar, P. Rose, A. Rajanikanth, T.P. Rajasekharan, V. Seshu Bai, Net-shaping of advanced ceramic composites by gelcasting into precision molds made by rapid-prototyping, International Journal of Applied Ceramic Technology 21/2 (2024) 664-674. DOI: https://doi.org/10.1111/ijac.14568
  • [9] H. Gujjaramma, B.S. Krishna, K. Gurushantha, S. Meena, G. Shobha, G.K. Raghu, Phyllantus acidus mediated combustion method synthesised yttria stabilized zirconia, its application as photocatalyst and antibacterial agent, Desalination and Water Treatment 317 (2024) 100301. DOI: http://doi.org/10.1016/j.dwt.2024.100301
  • [10] F. Inchingolo, A.D. Inchingolo, I.A. Charitos, A.P. Cazzolla, M. Colella, R. Gagliano-Candela, D. Hazballa, I.R. Bordea, S.R. Tari, A. Scarano, F. Lorusso, L. Riccaldo, A. Palermo, G. Dipalma, G. Malcangi, A.M. Inchingolo, Ceramic biomaterials in dentistry: chemical structure and biosafety – a review and a bibliometric visual mapping on Scopus database, European Review for Medical and Pharmacological Sciences 28/4 (2024) 1242-1258. DOI: http://doi.org/10.26355/eurrev_202402_35446
  • [11] S. Ozkan, S.J. Kim, D.N. Miller, J.T.S. Irvine, A new approach to fuel cell electrodes: Lanthanum aluminate yielding fine Pt nanoparticle exsolution for oxygen reduction reaction, Advanced Energy Materials 14/15 (2024) 2303025. DOI: http://doi.org/10.1002/aenm.202303025
  • [12] A. Shearer, M. Montazerian, B. Deng, J.J. Sly, J.C. Mauro, Zirconia‐containing glass‐ceramics: From nucleating agent to primary crystalline phase, International Journal of Ceramic Engineering and Science 6/2 (2024) e10200. DOI: http://doi.org/10.1002/ces2.10200
  • [13] Y. Wang, W. Qin, Z. Deng, L. Xu, B. Liu, G. Zhang, X. Wang, L. Zhu, D. Xu, High strength Y2O3-stabilized zirconia continuous fibers up to 1500°C: crystalline phase and microstructure evolution as well as grain growth kinetics, Journal of Alloys and Compounds 976 (2024) 173165. DOI: http://doi.org/10.1016/j.jallcom.2023.173165
  • [14] L. Du, J. Yang, X. Zhong, N. Wang, H. Zhang, W. Zeng, Y. Xiao, X. Huang, Synthesized by coprecipitation method for controlled phase structures of 5YSZ, Journal of Materials Research and Technology 29 (2024) 5473-5483. DOI: http://doi.org/10.1016/j.jmrt.2024.02.222
  • [15] H. Sun, P. Tabrizian, A. Qambrani, U. Jargalsaikhan, T. Sui, T. Ireland, B. Su, Bio-inspired nacre-like zirconia/PMMA composites for chairside CAD/CAM dental restorations, Dental Materials 40/2 (2024) 307- 317. DOI: http://doi.org/10.1016/j.dental.2023.11.017
  • [16] M. Spyrka, R. Atraszkiewicz, L. Klimek, A new ceramic composite based on spherical aluminium oxide for auxiliary panels in high-temperature firing processes, Archives of Materials Science and Engineering 101/1 (2020) 5-14. DOI: https://doi.org/10.5604/01.3001.0013.9501
  • [17] A. Włodarczyk-Fligier, M. Polok-Rubiniec, J. Konieczny, Thermal analysis of matrix composite reinforced with Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 100/1 (2020) 5-11. DOI: https://doi.org/10.5604/01.3001.0014.1957
  • [18] I.G. Alhindawy, H. Gamal, A.A. Zaher, M.I. Sayyed,. A.H. Almuqrin, D.A. Aloriani, Y.A. Elsheikh, O.Y. Bakather, K.A. Mahmoud, La/Nd-doped zirconium oxide: impact of zirconia phase transition on gamma-ray shielding properties, Journal of Physics and Chemistry of Solids 187 (2024) 111828. DOI: http://doi.org/10.1016/j.jpcs.2023.111828
  • [19] S. Wu, S. Liu, Y. Chen, J. Wang, B. Han, C. Liu, Z. Zhu, S. Shen, Z. Yu, Z. Zhang, X. Zheng, Optimization of the structure and morphology of monoclinic phase nanoscale zirconium dioxide, MRS Communications 14 (2024) 646-652. DOI: https://doi.org/10.1557/s43579-024-00578-9
  • [20] H. Charalambous, M.H. Jancich, P.W.F. Evans, J. Rivera, J.T. Cahill, W.L. Du Frane, J.D. Kuntz, B. Yang, Processing and characterization of the homologous ZrxTa2O2x+5 series, Ceramics International 50/9/B (2024) 15848-15855. DOI: http://doi.org/10.1016/j.ceramint.2024.02.064
  • [21] Y. Wang, X. Liu, S. Pan, Q. Zhou, J. Shu, Local structure regulation and spectroscopy study of blue cubic zirconia, CrystEngComm 25/11 (2023) 1582- 1588. DOI: http://doi.org/10.1039/D2CE01674E
  • [22] X. Zhu, G. Hou, J. Ma, X. Zhang, Y. An, H. Zhou, J. Chen, W. Li, Effect of Y2O3 doping content on phase composition, mechanical properties and cavitation erosion performance of ZrO2 ceramics, Ceramics International 50/9/A (2024) 14718-14730. DOI: http://doi.org/10.1016/j.ceramint.2024.01.385
  • [23] H. Yoo, J. Kim, H. Lee, I. Jo, H. Lee, Phase formation and stabilization behavior of Ca-PSZ by post-heat treatment II: CaOx-ZrO2(1 − x ) ( x = 5–10 mol%), Metals 13/10 (2023) 1659. DOI: http://doi.org/10.3390/met13101659
  • [24] M.M.H. Parvez, M.A. Daud, Effects of TiO2 on the mechanical and physical properties of Fe2O3-doped yttria-stabilized zirconia for electrolyte of solid oxide fuel cells, Results in Surfaces and Interfaces 16 (2024) 100239. DOI: https://doi.org/10.1016/j.rsurfi.2024.100239
  • [25] Y. Yue, Y. Zhu, Z. Li, Preparation and cutting performance study of YSZ-toughened PcBN superhard tools, RSC Advances 13/23 (2023) 15616-15623. DOI: https://doi.org/10.1039/d3ra02079g
  • [26] J.C.C.A. Diaz, E.N.D.S. Muccillo, R. Muccillo, Porous 8YSZ ceramics prepared with alkali halide sacrificial additives, Materials 16/9 (2023) 3509. DOI: https://doi.org/10.3390/ma16093509
  • [27] V. Kulyk, I. Izonin, V. Vavrukh, R. Tkachenko, Z. Duriagina, B. Vasyliv, M. Kováčová, Prediction of hardness, flexural strength, and fracture toughness of ZrO2 based ceramics using ensemble learning algorithms, Acta Metallurgica Slovaca 29/2 (2023) 93- 103. DOI: https://doi.org/10.36547/ams.29.2.1819
  • [28] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/01.3001.0014.1481
  • [29] D. Cao, K. Lv, Y. Bao, Y. Tian, D . Wan, Thickness effect of an alumina–zirconia–mullite composite coating on the properties of Zirconia, RSC Advances 13/4 (2023) 2736-2744. DOI: http://doi.org/10.1039/D2RA07549K
  • [30] H. Peng, Y. Yu, T. Shi, B. Bai, Z. Yan, K. Yuan, Effects of induction plasma spheroidization on properties of yttria-stabilized zirconia powders for thermal barrier coating applications, Materials 17/7 (2024) 1518. DOI: http://doi.org/10.3390/ma17071518
  • [31] N. Bahiyah Baba, A.S. Ghazali, S.N. Azinee, A.H. Abdul Rahman, S. Sharif, Effect of particle size on surface roughness and morphology of heat-treated electroless Ni-YSZ coating, Journal of Achievements in Materials and Manufacturing Engineering 114/1 (2022) 5-14. DOI: https://doi.org/10.5604/01.3001.0016.1477
  • [32] N. Bahiyah Baba, A.S. Ghazali, A.H. Abdul Rahman, S. Sharif, Effect of heat treatment on microhardness of electroless Ni-YSZ cermet coating, Journal of Achievements in Materials and Manufacturing Engineering 113/1 (2022) 5-12. DOI: https://doi.org/10.5604/01.3001.0016.0940
  • [33] X. Fu, F. Zhang, W. Zhu, Z. Pi, Mechanical properties and toughening mechanisms of promising Zr-Y-Ta-O composite ceramics, Coatings 13/5 (2023) 855. DOI: http://doi.org/10.3390/coatings13050855
  • [34] I. Sanchez, D. Axinte, Z. Liao, O. Gavalda-Diaz, R. Smith, The effect of high strain rate impact in yttria stabilized zirconia, Materials and Design 229 (2023) 111908. DOI: http://doi.org/10.1016/j.matdes.2023.111908
  • [35] H. Li, W. Qian, Z. Zhang, S. Wang, Y. Chen, F. Zhang, Z. Hou, G. Gao, Q. Zhao, H. Zhan, The phase stability of t-ZrO2 realized by grain size at cryogenic temperature in ZrO2/TiO2 composite, Materials and Design 239 (2024) 112741. DOI: http://doi.org/10.1016/j.matdes.2024.112741
  • [36] Z.-G. Wang, W.-D. Chen, S.-F. Yan, X.-K. Zhong, W. Ma, X.-W. Song, Y.-M. Wang, J.-H. Ouyang, Direct fabrication and characterization of zirconia thick coatings on zirconium hydride as a hydrogen permeation barrier, Coatings 13/5 (2023) 884. DOI: https://doi.org/10.3390/coatings13050884
  • [37] P. Gothwal, F. Singh, V. Chauhan, B. Joshi, Effects of lithium ion irradiation on yttria-stabilized zirconia thin films: Structural and optical investigations, Journal of Electronic Materials 53 (2024) 5204-5211. DOI: https://doi.org/10.1007/s11664-024-11230-6
  • [38] F. Mayinger, R. Buser, M. Laier, L.M. Schönhoff, M. Kelch, R. Hampe, B. Stawarczyk, Impact of the material and sintering protocol, layer thickness, and thermomechanical aging on the two-body wear and fracture load of 4Y-TZP crowns, Clinical Oral Investigations 26 (2022) 6617-6628. DOI: https://doi.org/10.1007/s00784-022-04616-5
  • [39] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics, Journal of Achievements in Materials and Manufacturing Engineering 99/1 (2020) 14-41. DOI: https://doi.org/10.5604/01.3001.0014.1598
  • [40] P. Rokicki, M. Góral, T. Kubaszek, K. Dychton, M. Drajewicz, M. Wierzbińska, K. Ochal, The micro-structure and thermal properties of Yb2SiO5 coating deposited using APS and PS-PVD methods, Archives of Materials Science and Engineering 114/2 (2022) 49- 57. DOI: https://doi.org/10.5604/01.3001.0016.0025
  • [41] M. Alghauli, A.Y. Alqutaibi, S. Wille, M. Kern, 3D-printed versus conventionally milled zirconia for dental clinical applications: Trueness, precision, accuracy, biological and esthetic aspects, Journal of Dentistry 144 (2024) 104925. DOI: http://doi.org/10.1016/j.jdent.2024.104925
  • [42] Y.S. Romario, C. Bhat, M. Ramezani, T. Pasang, Z. Chen, C.-P. Jiang, Fabrication of translucent graded dental crown using Zirconia-Yttrium Multi-Slurry tape casting 3D printer, Journal of the Mechanical Behavior of Biomedical Materials 152 (2024) 106406. DOI: http://doi.org/10.1016/j.jmbbm.2024.106406
  • [43] J.P. Winczewski, S. Zeiler, S. Gabel, D. Maestre, B. Merle, J.G.E. Gardeniers, A. Susarrey Arce, Additive manufacturing of 3D yttria-stabilized zirconia microarchitectures, Materials and Design 238 (2024) 112701. DOI: http://doi.org/10.1016/j.matdes.2024.112701
  • [44] S.N. Almohammed, B. Alshorman, L.A. Abu-Naba’a, Mechanical properties of five esthetic ceramic materials used for monolithic restorations: a comparative in vitro study, Ceramics 6/2 (2023) 1031-1049. DOI: http://doi.org/10.3390/ceramics6020061
  • [45] J.-M. Jung, G.-N. Kim, Y.-H. Koh, H.-E. Kim, Manufacturing and characterization of dental crowns made of 5-mol% yttria stabilized zirconia by digital light processing, Materials 16/4 (2023) 1447. DOI: http://doi.org/10.3390/ma16041447
  • [46] H. Shao, J. Zhu, X. Zhao, P. Xia, Y. Wang, T. Zhang, Y. Gong, Y. He, Q. Yao, Additive manufacturing of magnesium-doped calcium silicate/zirconia ceramic scaffolds with projection-based 3D printing: Sintering, mechanical and biological behavior, Ceramics International 50/6 (2024) 9280-9292. DOI: http://doi.org/10.1016/j.ceramint.2023.12.244
  • [47] G.P. Alparone, D. Penney, E. Jewell, J. Sullivan, C. Mills, The effect of sliding speed on the tribological properties of ceramic materials, Materials 16/23 (2023) 7252. DOI: http://doi.org/10.3390/ma16237252
  • [48] T.F. Alghazzawi, A comparison of failure loads for polycrystalline zirconia ceramics with varying amounts of yttria, glass-ceramics and polymers in two different test conditions, Polymers 15/23 (2023) 4506. DOI: http://doi.org/10.3390/polym15234506
  • [49] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) 59-85. DOI: https://doi.org/10.5604/01.3001.0014.1525
  • [50] Y. Zhang, C. Ren, J. Zhou, M. Omran, F. Zhang, J. Tang, G. Chen, Influence of microwave heating on grain growth behavior and phase stability of nano Y2O3/La2O3 co-doped ZrO2 ceramics, Ceramics International 50/6 (2024) 8733-8741. DOI: http://doi.org/10.1016/j.ceramint.2023.12.190
  • [51] T.M.B. Campos, C. Dos Santos, L.M.M. Alves, E.B. Benalcazar-Jalkh, H.B. Strazzi-Sahyon, E.T.P. Bergamo, S.M. Tebcherani, L. Witek, P.G. Coelho, S. Yamaguchi, G.P. Thim, E.A. Bonfante, Minimally processed recycled yttria-stabilized tetragonal zirconia for dental applications: Effect of sintering temperature on glass infiltration, Journal of the Mechanical Behavior of Biomedical Materials 150 (2024) 106311. DOI: http://doi.org/10.1016/j.jmbbm.2023.106311
  • [52] P. Uasuwan, N. Juntavee, A. Juntavee, Flexural strength of novel glass infiltrated monochrome and multilayer high yttrium oxide containing zirconia upon various sintered cooling rates, Journal of Prosthodontics 33/S1 (2024) 47-59. DOI: http://doi.org/10.1111/jopr.13872
  • [53] G. Sokolowski, A. Szczesio-Wlodarczyk, M.I. Szynkowska-Jóźwik, W. Stopa, J. Sokolowski, K. Kopacz, K. Bociong, The shear bond strength of resin-based luting cement to zirconia ceramics after different surface treatments, Materials 16/15 (2023) 5433. DOI: http://doi.org/10.3390/ma16155433
  • [54] P. Uasuwan, N. Juntavee, A. Juntavee, Flexural strength of high yttrium oxide‐doped monochrome and multilayered fully stabilized zirconia upon various sintered cooling rates, Journal of Prosthodontics 32/6 (2023) e118-e128. DOI: http://doi.org/10.1111/jopr.13692
  • [55] B.R. Vaishnavi Krupa, C. Ghosh, S.K. Sinha, A. Dasgupta, Reverse transition of ball milling induced m- Y2O3 nano-crystallites during in-situ annealing, Ceramics International 49/14/A (2023) 23522-23530. DOI: http://doi.org/10.1016/j.ceramint.2023.04.185
  • [56] N.C. Golota, Z.P. Fredin, D.P. Banks, D. Preiss, S. Bahri, P. Patil, W.K. Langford, C.L. Blackburn, E. Strand, B. Michael, B. Dastrup, K.A. Nelson, N. Gershenfeld, R. Griffin, Diamond Rotors, Journal of Magnetic Resonance 352 (2023) 107475. DOI: http://doi.org/10.1016/j.jmr.2023.107475
  • [57] M.B. Hanif, S. Rauf, Z.U. Abadeen, K. Khan, Z. Tayyab, S. Qayyum, M. Mosiałek, Z. Shao, C.-X. Li, M. Motola, Proton-conducting solid oxide electrolysis cells: Relationship of composition-structure-property, their challenges, and prospects, Matter 6/6 (2023) 1782-1830. DOI: http://doi.org/10.1016/j.matt.2023.04.013
  • [58] B. Alfahed, A. Alayad, The effect of sintering temperature on Vickers microhardness and flexural strength of translucent multi-layered zirconia dental materials, Coatings 13/4 (2023) 688. DOI: http://doi.org/10.3390/coatings13040688
  • [59] K. Hoggas, S. Benaissa, A. Cherouana, S. Bouheroum, A. Assali, M. Hamidouche, G. Fantozzi, Mechanical behavior of transparent spinel fabricated by spark plasma sintering, Ceramics 6/2 (2023) 1191-1209. DOI: http://doi.org/10.3390/ceramics6020072
  • [60] K. Nonaka, M. Teramae, G. Pezzotti, Evaluation of the effect of high-speed sintering and specimen thickness on the properties of 5 mol% yttria-stabilized dental zirconia sintered bodies, Materials 15/16 (2022) 5685. DOI: https://doi.org/10.3390/ma15165685
  • [61] T.F. Alghazzawi, G.M. Janowski, H. Ning, A.W. Eberhardt, Qualitative SEM analysis of fracture surfaces for dental ceramics and polymers broken by flexural strength testing and crown compression, Journal of Prosthodontics 32/5 (2023) e100-e110. DOI: http://doi.org/10.1111/jopr.13659
  • [62] W. Huang, H. Qiu, Y. Zhang, F. Zhang, L. Gao, M. Omran, G. Chen, Microstructure and phase transformation behavior of Al2O3–ZrO2 under microwave sintering, Ceramics International 49/3 (2023) 4855-4862. DOI: https://doi.org/10.1016/j.ceramint.2022.09.376
  • [63] Y. Li, H. Sun, J. Song, Z. Zhang, H. Lan, L. Tian, K. Xie, Effect of two-step sintering on the mechanical and electrical properties of 5YSZ and 8YSZ ceramics, Materials 16/5 (2023) 2019. DOI: https://doi.org/10.3390/ma16052019
  • [64] V. Kulyk, Z. Duriagina, B. Vasyliv, V. Vavrukh, T. Kovbasiuk, P. Lyutyy, V. Vira, The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia, Materials 15/8 (2022) 2707. DOI: https://doi.org/10.3390/ma15082707
  • [65] V. Kulyk, Z. Duriagina, A. Kostryzhev, B. Vasyliv, O. Marenych, Effects of sintering temperature and yttria content on microstructure, phase balance, fracture surface morphology, and strength of yttria-stabilized zirconia, Applied Sciences 12/22 (2022) 11617. DOI: https://doi.org/10.3390/app122211617
  • [66] V.V. Kulyk, Z.A. Duriagina, B.D. Vasyliv, V.I. Vavrukh, P.Y. Lyutyy, T.M. Kovbasiuk, M.Y. Holovchuk, Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia, Archives of Materials Science and Engineering 109/2 (2021) 65-79. DOI: https://doi.org/10.5604/01.3001.0015.2625
  • [67] V. Kulyk, Z. Duriagina, A. Kostryzhev, B. Vasyliv, V. Vavrukh, O. Marenych, The effect of yttria content on microstructure, strength, and fracture behavior of yttria-stabilized zirconia, Materials 15/15 (2022) 5212. DOI: https://doi.org/10.3390/ma15155212
  • [68] Q. Flamant, F. García Marro, J.J. Roa Rovira, M. Anglada, Hydrofluoric acid etching of dental zirconia. Part 1: Etching mechanism and surface characterization, Journal of the European Ceramic Society 36/1 (2016) 121-134. DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.09.021
  • [69] P. Klimczyk, P. Wyżga, J. Cyboroń, J. Laszkiewicz-Łukasik, M. Podsiadło, S. Cygan, L. Jaworska, Phase stability and mechanical properties of Al2O3-cBN composites prepared via spark plasma sintering, Diamond and Related Materials 104 (2020) 107762. DOI: https://doi.org/10.1016/j.diamond.2020.107762
  • [70] R.M. Spriggs, Expression for effect of porosity on elastic modulus of polycrystalline refractory materials, particularly aluminum oxide, Journal of the American Ceramic Society 44/12 (1961) 628-629. DOI: https://doi.org/10.1111/j.1151-2916.1961.tb11671.x
  • [71] R.W. Rice, Evaluating porosity parameters for porosity-property relations, Journal of the American Ceramic Society 76/7 (1993) 1801-1808. DOI: https://doi.org/10.1111/j.1151-2916.1993.tb06650.x
  • [72] N. Ramakrishnan, V.S. Arunachalam, Effective elastic moduli of porous ceramic materials, Journal of the American Ceramic Society 76/11 (1993) 2745-2752. DOI: https://doi.org/10.1111/j.1151-2916.1993.tb04011.x
  • [73] Z. Hashin, The elastic moduli of heterogeneous materials, Journal of Applied Mechanics 29/1 (1962) 143-150. DOI: https://doi.org/10.1115/1.3636446
  • [74] Zirconia Ceramics ZrO2. Available from: https://www.elantechnology.com/ceramics/ceramic-materials/zirconia-ceramics/
  • [75] K. Matsui, H. Yoshida, Y. Ikuhara, Isothermal sintering effects on phase separation and grain growth in yttria-stabilized tetragonal zirconia polycrystal, Journal of the American Ceramic Society 92/2 (2009) 467-475. DOI: https://doi.org/10.1111/j.1551-2916.2008.02861.x
  • [76] R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture 100 (1999) 55-83. DOI: https://doi.org/10.1023/A:1018655917051
  • [77] V. Kulyk, B. Vasyliv, Z. Duriagina, P. Lyutyy, V. Vavrukh, A. Kostryzhev, The effect of sintering temperature on phase-related peculiarities of the microstructure, flexural strength, and fracture toughness of fine-grained ZrO2–Y2O3–Al2O3–CoO– CeO2–Fe2O3 ceramics, Crystals 14/2 (2024) 175. DOI: https://doi.org/10.3390/cryst14020175
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d94be67b-7fd0-450c-9efa-f3f07e5fba1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.