PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of the influence of xanthan gum on rheological properties of dough and quality of bread made from sprouted wheat grain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of microbial polysaccharide xanthan in the amount of 0.1-0.4% on the rheological characteristics of the dough from sprouted wheat grain and quality indicators of bread was studied. It was found that when xanthan gum is added, the dough's spreading and adhesion strength decreases, and the dough's resilience-elastic and plastic-viscous characteristics improve. Bread made from sprouted wheat grains with the addition of experimental dosages of xanthan has better structural-mechanical and physicochemical properties, as evidenced by higher indicators of crumb compressibility, specific volume, and moisture compared to the control sample. To obtain bread with the best quality indicators, it is recommended to use 0.3% xanthan.
Twórcy
  • Department of Technology of Grain Products and Confectionery, State Biotechnological University, 44 Alchevskih str., Kharkiv, Ukraine
  • Department of Technology of Grain Products and Confectionery, State Biotechnological University, 44 Alchevskih str., Kharkiv, Ukraine
  • Department of Technology of Grain Products and Confectionery, State Biotechnological University, 44 Alchevskih str., Kharkiv, Ukraine
  • Department of Technology of Grain Products and Confectionery, State Biotechnological University, 44 Alchevskih str., Kharkiv, Ukraine
Bibliografia
  • [1] D. Aune, N. Keum, E. Giovannucci, L.T. Fadnes, P. Boffetta, D.C. Greenwood, S. Tonstad, L.J. Vatten, E. Riboli, T. Norat, Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies, BMJ. 353 (2016) i2716. https://doi.org/10.1136/bmj.i2716.
  • [2] S.H. Hosseini, J.M. Jones, H. Vatanparast, Association between grain intake, nutrient intake, and diet quality of canadians: Evidence from the canadian community health survey–nutrition 2015, Nutrients. 11 (2019) 1937. https://doi.org/10.3390/nu11081937.
  • [3] A. Helnæs, C. Kyrø, I. Andersen, S. Lacoppidan, K. Overvad, J. Christensen, A. Tjønneland, A. Olsen, Intake of whole grains is associated with lower risk of myocardial infarction: The Danish Diet, Cancer and Health Cohort, Am. J. Clin. Nutr. 103 (2016) 999–1007. https://doi.org/10.3945/ajcn.115.124271.
  • [4] J.M. Jones, J. Engleson, Whole grains: Benefits and challenges, Annu. Rev. Food Sci. Technol. 1 (2010) 19–40. https://doi.org/10.1146/annurev.food.112408.132746.
  • [5] C. De La Fuente-Arrillaga, M.A. Martinez-Gonzalez, I. Zazpe, Z. Vazquez-Ruiz, S. Benito-Corchon, M. Bes-Rastrollo, Glycemic load, glycemic index, bread and incidence of overweight/obesity in a Mediterranean cohort: The SUN project, BMC Public Health. 14 (2014) 1091. https://doi.org/10.1186/1471-2458-14-1091.
  • [6] L. Serra-Majem, I. Bautista-Castaño, Relationship between bread and obesity, Br. J. Nutr. 113 (2015) S29–S35. https://doi.org/10.1017/S0007114514003249.
  • [7] G. Qi, S. Zeng, T. Takashima, K. Nozoe, M. Shobayashi, K. Kakugawa, K. Murakami, H. Jikihara, L. Zhou, F Shimamoto, Inhibitory effect of various breads on DMH-induced aberrant crypt foci and colorectal tumours in rats, Biomed Res. Int. 2015 (2015) 1–8. https://doi.org/10.1155/2015/829096.
  • [8] J. Montonen, H. Boeing, A. Fritsche, E. Schleicher, H.G. Joost, M.B. Schulze, A. Steffen, T. Pischon, Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress, Eur. J. Nutr. 52 (2013) 337–345. https://doi.org/10.1007/s00394-012-0340-6.
  • [9] A. Mofidi, Z.M. Ferraro, K.A. Stewart, H.M.F. Tulk, L.E. Robinson, A.M. Duncan, T.E. Graham, The acute impact of ingestion of sourdough and whole-grain breads on blood glucose, insulin, and incretins in overweight and obese men, J. Nutr. Metab. 2012 (2012) 1–9. https://doi.org/10.1155/2012/184710.
  • [10] S. Žilić, Z. Basić, V. Hadži-Tašković Šukalović, V. Maksimović, M. Janković, M. Filipović, Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour?, Int. J. Food Sci. Technol. 49 (2014) 1040–1047. https://doi.org/10.1111/ijfs.12397.
  • [11] F. Yang, T.K. Basu, B. Ooraikul, Studies on germination conditions and antioxidant contents of wheat grain, Int. J. Food Sci. Nutr. 52 (2001) 319–330. https://doi.org/10.1080/09637480120057567.
  • [12] P. Koehler, G. Hartmann, H. Wieser, M. Rychlik, Changes of folates, dietary fiber, and proteins in wheat as affected by germination, J. Agric. Food Chem. 55 (2007) 4678–4683. https://doi.org/10.1021/jf0633037.
  • [13] P. Van Hung, D.W. Hatcher, W. Barker, Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities, Food Chem. 126 (2011) 1896–1901. https://doi.org/10.1016/j.foodchem.2010.12.015.
  • [14] P. van Hung, T. Maeda, S. Yamamoto, N. Morita, Effects of germination on nutritional composition of waxy wheat, J. Sci. Food Agric. 92 (2012) 667–672. https://doi.org/10.1002/jsfa.4628.
  • [15] M.A. Azeke, S.J. Egielewa, M.U. Eigbogbo, I.G. Ihimire, Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum), J. Food Sci. Technol. 48 (2011) 724–729. https://doi.org/10.1007/s13197-010-0186-y.
  • [16] N.N. Alekhina, E.I. Ponomareva, I.M. Zharkova, A. V. Grebenshchikov, Assessment of the bioavailability of minerals and antioxidant activity of the grain bread in the in vivo experiment, Russ. Open Med. J. 7 (2018) e0409. https://doi.org/10.15275/rusomj.2018.0409.
  • [17] A. Singh, S. Sharma, Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review, Crit. Rev. Food Sci. Nutr. 57 (2017) 3051–3071. https://doi.org/10.1080/10408398.2015.1085828.
  • [18] K. Nelson, L. Stojanovska, T. Vasiljevic, M. Mathai, Germinated grains: A superior whole grain functional food?, Can. J. Physiol. Pharmacol. 91 (2013) 429–441. https://doi.org/10.1139/cjpp-2012-0351.
  • [19] N. Naumenko, I. Potoroko, I. Kalinina, R. Fatkullin, E. Ivanisova, The Influence of the Use of Whole Grain Flour from Sprouted Wheat Grain on the Rheological and Microstructural Properties of Dough and Bread, Int. J. Food Sci. 2021 (2021) 1–9. https://doi.org/10.1155/2021/7548759.
  • [20] Y. Ichinose, K. Takata, T. Kuwabara, N. Iriki, T. Abiko, H. Yamauchi, Effects of Increase in α-Amylase and Endo-Protease Activities during Germination on the Breadmaking Quality of Wheat, Food Sci. Technol. Res. 7 (2001) 214–219. https://doi.org/10.3136/fstr.7.214.
  • [21] M. Hrušková, D. Novotná, Effect of ascorbic acid on the rheological properties of wheat fermented dough, Czech J. Food Sci. 21 (2018) 137–144. https://doi.org/10.17221/3490-cjfs.
  • [22] M.B. C eacute sar, B.B. Natalia, M.L.N.G. Jane, M.S. Sydnei, Influence of enzymes and ascorbic acid on dough rheology and wheat bread quality, African J. Biotechnol. 15 (2016) 55–61. https://doi.org/10.5897/ajb2015.14931.
  • [23] A. Bonet, C.M. Rosell, I. Pérez-Munuera, I. Hernando, Rebuilding gluten network of damaged wheat by means of glucose oxidase treatment, J. Sci. Food Agric. 87 (2007) 1301–1307. https://doi.org/10.1002/jsfa.2846.
  • [24] S. Oliinyk, O. Samokhvalova, A. Zaparenko, E. Shidakova-Kamenyuka, M. Chekanov, Research into the impact of enzyme preparations on the processes of grain dough fermentation and bread quality, Eastern-European J. Enterp. Technol. 3 (2016) 46–53. https://doi.org/10.15587/1729-4061.2016.70984.
  • [25] H. Akdogan, M. Tilley, O.K. Chung, Effect of emulsifiers on textural properties of whole wheat tortillas during storage, Cereal Chem. 83 (2006) 632–635. https://doi.org/10.1094/CC-83-0632.
  • [26] Z. Sheikholeslami, M. Mahfouzi, M. Karimi, M. Ghiafehdavoodi, Modification of dough characteristics and baking quality based on whole wheat flour by enzymes and emulsifiers supplementation, LWT. 139 (2021) 110794. https://doi.org/10.1016/j.lwt.2020.110794.
  • [27] C. Ferrero, Hydrocolloids in wheat breadmaking: A concise review, Food Hydrocoll. 68 (2017) 15–22. https://doi.org/10.1016/j.foodhyd.2016.11.044.
  • [28] J.K. Rocks, Xanthan Gum, Food Technol. 25 (1991) 476–483.
  • [29] F. García-Ochoa, V.E. Santos, J.A. Casas, E. Gómez, Xanthan gum: Production, recovery, and properties, Biotechnol. Adv. 18 (2000) 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1.
  • [30] J.P.S. Sidhu, A.S. Bawa, Dough characteristics and baking studies of wheat flour fortified with xanthan gum, Int. J. Food Prop. 5 (2002) 1–11. https://doi.org/10.1081/JFP-120015588.
  • [31] N.E. Linlaud, M.C. Puppo, C. Ferrero, Effect of hydrocolloids on water absorption of wheat flour and farinograph and textural characteristics of dough, Cereal Chem. 86 (2009) 376–382. https://doi.org/10.1094/CCHEM-86-4-0376.
  • [32] O. Samokhvalova, Y. Chemikova, S. Oliinyk, K. Kasabova, The effect of microbial polysaccharides on the properties of wheat flour, Eastern-European J. Enterp. Technol. 6 (2015) 11–15. https://doi.org/10.15587/1729-4061.2015.56177.
  • [33] A. Culetu, D.E. Duta, M. Papageorgiou, T. Varzakas, The role of hydrocolloids in gluten-free bread and pasta; rheology, characteristics, staling and glycemic index, Foods. 10 (2021) 3121. https://doi.org/10.3390/foods10123121.
  • [34] R. Crockett, P. Ie, Y. Vodovotz, How do xanthan and hydroxypropyl methylcellulose individually affect the physicochemical properties in a model gluten-free dough?, J. Food Sci. 76 (2011) E274–E282. https://doi.org/10.1111/j.1750-3841.2011.02088.x.
  • [35] V. Mykhaylov, O. Samokhvalova, Z. Kucheruk, K. Kasabova, O. Simakova, I. Goriainova, A. Rogovaya, I. Choni, Influence of microbial polysaccharides on the formation of structure of protein-free and gluten-free flour-based products, Eastern-European J. Enterp. Technol. 6 (2019) 23–32. https://doi.org/10.15587/1729-4061.2019.184464.
  • [36] A. Lazaridou, D. Duta, M. Papageorgiou, N. Belc, C.G. Biliaderis, Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations, J. Food Eng. 79 (2007) 1033–1047. https://doi.org/10.1016/j.jfoodeng.2006.03.032.
  • [37] L. Tebben, Y. Li, Effect of xanthan gum on dough properties and bread qualities made from whole wheat flour, Cereal Chem. 96 (2019) 263–272. https://doi.org/10.1002/cche.10118.
  • [38] V.I. Drobot, Tekhnokhimichnyi kontrol syrovyny ta khlibobulochnykh i makaronnykh vyrobiv, Kondor-Vydavnytstvo, Kyiv, Ukraine, 2015.
  • [39] A.B. Goralchuk, P. Pivovarov, O. Grinchenko, M.I. Pogozhih, Reologichni metodi doslidzhennya sirovini i harchovih produktiv ta avtomatizatsiya rozrahunkiv reologichnih harakteristik: Navchalniy posibnik, Harkiv, 2006.
  • [40] G. Wu, X. Liu, Z. Hu, K. Wang, L. Zhao, Impact of xanthan gum on gluten microstructure and bread quality during the freeze-thaw storage, LWT. 162 (2022) 113450. https://doi.org/10.1016/j.lwt.2022.113450.
  • [41] M. Zheng, H. Su, Q. You, S. Zeng, B. Zheng, Y. Zhang, H. Zeng, An insight into the retrogradation behaviors and molecular structures of lotus seed starch-hydrocolloid blends, Food Chem. 295 (2019) 548–555. https://doi.org/10.1016/j.foodchem.2019.05.166.
  • [42] C. Ferrero, M.N. Martino, N.E. Zaritzky, Corn Starch‐Xanthan Gum Interaction and Its Effect on the Stability During Storage of Frozen Gelatinized Suspension, Starch ‐ Stärke. 46 (1994) 300–308. https://doi.org/10.1002/star.19940460805.
  • [43] G. Maleki, J.M. Milani, Effect of guar gum, xanthan gum, CMC and HPMC on dough rhealogy and physical properties of barbari bread, Food Sci. Technol. Res. 19 (2013) 353–358. https://doi.org/10.3136/fstr.19.353.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d943338b-f772-46bc-bb7f-8de1748320a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.