PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the applicability of the SCS CN based models to simulate foods in the semi arid watersheds of northern Algeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Algeria has experienced catastrophic foods over the second half of the twentieth century, causing many deaths and extensive material damage. This study was conducted to fnd a suitable event-based rainfall-runof (RR) model for semi-arid conditions, where continuous data are not available in all regional basins. The study compared, based on data availability, the SCS-CN model based on the antecedent moisture conditions (AMC) and four modifed SCS-CN models incorporating antecedent moisture amounts (AMA) in order to fnd the best model to reproduce the food hydrographs in two catchments. The modi fed models were predominant over the SCS-CN method. Nonetheless, the Singh et al. (Water Resour Manag 29:4111–4127, 2015. https://doi.org/10.1007/s11269-015-1048-1) model (M4) and the Verma et al. (Environ Earth Sci 76:736, 2017a. https ://doi.org/10.1007/s12665-017-7062-2) model (M5) were superior and demonstrated more stable structures. Coupled with the Hayami routing model, the models showed promising results and were able to reproduce the observed hydrographs’ shape. However, it was impossible to choose the preferred model since they each excelled as to a criterion. Therefore, the corresponding outputs were combined using the simple average (SA) method and the weighted average (WA) method. We found that the WA method showed better results in the two catchments and allowed a more accurate prediction according to the performance criteria.
Słowa kluczowe
Czasopismo
Rocznik
Strony
217--230
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
  • Ecole Nationale Supérieure d’Hydraulique, LGEE, Blida, Algeria
  • Ecole Nationale Supérieure d’Hydraulique, LGEE, Blida, Algeria
Bibliografia
  • 1. Abdi I, Meddi M (2015) Modélisation pluie-débit distribuée dans deux bassins versants de l’est de l’Algérie. LARHYSS J P-ISSN 1112-3680/E-ISSN 2602-7828 7–22
  • 2. Ajami NK, Duan Q, Gao X, Sorooshian S (2006) Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results. J Hydrometeorol 7:755–768
  • 3. Ajmal M, Waseem M, Ahn J-H, Kim T-W (2015) Improved runoff estimation using event-based rainfall-runoff models. Water Resour Manag 29:1995–2010. https://doi.org/10.1007/s11269-015-0924-z
  • 4. Arnold JG, Allen PM (1999) Automated methods for estimating baseflow and ground water recharge from streamflow records. JAWRA J Am Water Resour Assoc 35:411–424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  • 5. Bennett ND, Croke BFW, Guariso G et al (2013) Characterising performance of environmental models. Environ Model Softw 40:1–20
  • 6. Brocca L, Melone F, Moramarco T, Morbidelli R (2009) Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 148:364–374. https://doi.org/10.1016/j.geoderma.2008.11.004
  • 7. Brocca L, Melone F, Moramarco T (2011) Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrol Process 25:2801–2813. https://doi.org/10.1002/hyp.8042
  • 8. CCI Land Cover team (2017) CCI LAND COVER-S2 prototype Land Cover 20 m map of Africa 2016
  • 9. Chahinian N, Moussa R, Andrieux P, Voltz M (2005) Comparison of infiltration models to simulate flood events at the field scale. J Hydrol 306:191–214. https://doi.org/10.1016/j.jhydrol.2004.09.009
  • 10. Chang TK, Talei A, Alaghmand S, Ooi MP-L (2017) Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques. J Hydrol 545:100–108. https://doi.org/10.1016/j.jhydrol.2016.12.024
  • 11. Chow VT, Maidment DR, Mays LW (1988) Appl hydrol. McGraw-Hil, New York
  • 12. Clemen RT, Murphy AH, Winkler RL (1995) Screening probability forecasts: contrasts between choosing and combining. Int J Forecast 11:133–145
  • 13. Daszykowski M, Walczak B, Massart DL (2002) Representative subset selection. Anal Chim Acta 468:91–103
  • 14. Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521
  • 15. Eckhardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process Int J 19:507–515. https://doi.org/10.1002/hyp.5675
  • 16. El Khalki E, Tramblay Y, Saidi ME et al (2018) Comparison of modeling approaches for flood forecasting in the High Atlas Mountains of Morocco. Arab J Geosci 11:15. https://doi.org/10.1007/s12517-018-3752-7
  • 17. Garen DC, Moore DS (2005) Curve number hydrology in water quality modeling: uses, abuses, and future directions 1. JAWRA J Am Water Resour Assoc 41:377–388
  • 18. Gaume E, Bain V, Bernardara P et al (2009) A compilation of data on European flash floods. J Hydrol 367:70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028
  • 19. Geetha K, Mishra SK, Eldho TI et al (2007) Modifications to SCS-CN method for long-term hydrologic simulation. J Irrig Drain Eng 133:475–486. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:5(475)
  • 20. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  • 21. Hawkins RH, Hjelmfelt AT, Zevenbergen AW (1985) Runoff probability, storm depth, and curve numbers. J Irrig Drain Eng 111:330–340. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:4(330)
  • 22. Hayami S (1951) On the propagation of flood waves. Bull Disaster Prev Res Inst Kyoto Univ 1(1):1–16
  • 23. Hdeib R, Abdallah C, Colin F et al (2018) Constraining coupled hydrological-hydraulic flood model by past storm events and post-event measurements in data-sparse regions. J Hydrol 565:160–176. https://doi.org/10.1016/j.jhydrol.2018.08.008
  • 24. Hebal A, Remini B (2011) Choix du modèle fréquentiel le plus adéquat à l’estimation des valeurs extrêmes de crues (cas du nord de L’Algérie). Can J Civ Eng 38:881–892
  • 25. Hossain S, Hewa GA, Wella-Hewage S (2019) A comparison of continuous and event-based rainfall-runoff (RR) modelling using EPA-SWMM. Water 11:611. https://doi.org/10.3390/w11030611
  • 26. Hughes DA (2011) Regionalization of models for operational purposes in developing countries: an introduction. Hydrol Res 42:331–337
  • 27. Hundecha Y, Bárdossy A (2004) Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J Hydrol 292:281–295
  • 28. Kim Y-O, Jeong D, Ko IH (2006) Combining rainfall-runoff model outputs for improving ensemble streamflow prediction. J Hydrol Eng 11:578–588
  • 29. Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31:13–24
  • 30. Li Z, Yu J, Xu X et al (2018) Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China. Proc Int Assoc Hydrol Sci 379:335
  • 31. Llasat MC, Llasat-Botija M, Prat MA et al (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55. https://doi.org/10.5194/adgeo-23-47-2010
  • 32. Lyne V, Hollick M (1979) Stochastic time-variable rainfall-runoff modelling. In: Institute of Engineers Australia National Conference, pp 89–93
  • 33. Madsen H (2000) Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J Hydrol 235:276–288. https://doi.org/10.1016/S0022-1694(00)00279-1
  • 34. Madsen H (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv Water Resour 26:205–216
  • 35. Maref N, Seddini A (2018) Modeling of flood generation in semi-arid catchment using a spatially distributed model: case of study Wadi Mekerra catchment (Northwest Algeria). Arab J Geosci 11:116
  • 36. Massari C, Brocca L, Barbetta S et al (2014) Using globally available soil moisture indicators for flood modelling in Mediterranean catchments. Hydrol Earth Syst Sci 18:839–853. https://doi.org/10.5194/hess-18-839-2014
  • 37. McIntyre N, Lee H, Wheater H et al (2005) Ensemble predictions of runoff in ungauged catchments. Water Resour Res 41:W12434. https://doi.org/10.1029/2005WR004289
  • 38. McLeod AI, Noakes DJ, Hipel KW, Thompstone RM (1987) Combining hydrologic forecasts. J Water Resour Plan Manag 113:29–41
  • 39. Meddi M, Toumi S, Assani AA (2017) Application of the L-moments approach to the analysis of regional flood frequency in Northern Algeria. Int J Hydrol Sci Technol 7:77. https://doi.org/10.1504/IJHST.2017.080959
  • 40. Mei Y, Anagnostou EN (2015) A hydrograph separation method based on information from rainfall and runoff records. J Hydrol 523:636–649. https://doi.org/10.1016/j.jhydrol.2015.01.083
  • 41. Michel C, Andréassian V, Perrin C (2005) Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resour Res. https://doi.org/10.1029/2004WR003191
  • 42. Mishra SK, Singh VP (2002a) SCS-CN-based hydrologic simulation package. In: Singh VP, Frevert DK (eds) Math Model Small Watershed Hydrol Appl 2841:391–464
  • 43. Mishra SK, Singh VP (2002b) SCS-CN method. Part I: derivation of SCS-CN-based models. Acta Geophys Polon 50(3):457–477
  • 44. Mishra SK, Singh VP, Sansalone JJ, Aravamuthan V (2003) A modified SCS-CN method: characterization and testing. Water Resour Manag 17:37–68. https://doi.org/10.1023/A:1023099005944
  • 45. Mishra SK, Sahu RK, Eldho TI, Jain MK (2006) An improved IaS relation incorporating antecedent moisture in SCS-CN methodology. Water Resour Manag 20:643–660. https://doi.org/10.1007/s11269-005-9000-4
  • 46. Mishra SK, Jain MK, Suresh Babu P et al (2008) Comparison of AMC-dependent CN-conversion formulae. Water Resour Manag 22:1409–1420. https://doi.org/10.1007/s11269-007-9233-5
  • 47. Mishra SK, Singh VP, Singh PK (2018) Revisiting the soil conservation service curve number method. In: Hydrologic modeling. Springer, pp 667–693
  • 48. Mora CR, Schimleck LR (2008) On the selection of samples for multivariate regression analysis: application to near-infrared (NIR) calibration models for the prediction of pulp yield in Eucalyptus nitens. Can J For Res 38:2626–2634
  • 49. Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900
  • 50. Moussa R, Bocquillon C (1996) Algorithms for solving the diffusive wave flood routing equation. Hydrol Process 10:105–123. https://doi.org/10.1002/(SICI)1099-1085(199601)10:1%3c105:AID-HYP304%3e3.0.CO;2-P
  • 51. Moussa R, Chahinian N (2009) Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events. Hydrol Earth Syst Sci 13:519–535. https://doi.org/10.5194/hess-13-519-2009
  • 52. NASA/METI/AIST/Japan Spacesystems, U.S./Japan ASTER Science Team (2009) ASTER global digital elevation model [Data set]. https://doi.org/10.5067/ASTER/ASTGTM.002
  • 53. Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/S0022-1694(03)00225-7
  • 54. Pilon PJ (2002) Guidelines for reducing flood losses. United Nations International Strategy for Disaster Reduction (UNISDR)
  • 55. Ponce VM, Hawkins RH (1996) Runoff curve number: Has it reached maturity? J Hydrol Eng 1:11–19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)
  • 56. Puzyn T, Mostrag-Szlichtyng A, Gajewicz A et al (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22:795–804. https://doi.org/10.1007/s11224-011-9757-4
  • 57. Sahu RK, Mishra SK, Eldho TI (2010) An improved AMC-coupled runoff curve number model. Hydrol Process 24:2834–2839. https://doi.org/10.1002/hyp.7695
  • 58. Sahu RK, Mishra SK, Eldho TI (2012) Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India. ISH J Hydraul Eng 18:27–36. https://doi.org/10.1080/09715010.2012.662425
  • 59. SCS (1972) SCS national engineering handbook. Section 4, Hydrology. In: National engineering handbook
  • 60. Shamseldin AY, O’connor KM (1999) A real-time combination method for the outputs of different rainfall-runoff models. Hydrol Sci J 44:895–912
  • 61. Shi Z-H, Chen L-D, Fang N-F et al (2009) Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena 77:1–7. https://doi.org/10.1016/j.catena.2008.11.006
  • 62. Singh SKMVP (1999) Behaviour of SCS-CN method in C-l’a-x spectrum. In: Hydrologic modeling: proceedings of the international conference on water, environment, ecology, socio-economics, and health engineering (WEESHE): October 18–21, 1999, Seoul National University, Seoul, Korea. Water Resources Publication, p 112
  • 63. Singh PK, Mishra SK, Berndtsson R et al (2015) Development of a modified SMA based MSCS-CN model for runoff estimation. Water Resour Manag 29:4111–4127. https://doi.org/10.1007/s11269-015-1048-1
  • 64. Snee RD (1977) Validation of regression models: methods and examples. Technometrics 19:415–428
  • 65. Sobhani G (1976) A review of selected small watershed design methods for possible adoption to Iranian conditions
  • 66. Soulis KX, Valiantzas JD, Dercas N, Londra PA (2009) Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrol Earth Syst Sci 13:605–615. https://doi.org/10.5194/hess-13-605-2009
  • 67. Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370. https://doi.org/10.1016/0022-1694(94)02540-R
  • 68. Todini E (1988) Rainfall-runoff modeling: past, present and future. J Hydrol 100:341–352. https://doi.org/10.1016/0022-1694(88)90191-6
  • 69. Todini E (2011) History and perspectives of hydrological catchment modelling. Hydrol Res 42:73–85. https://doi.org/10.2166/nh.2011.096
  • 70. Tramblay Y, Bouvier C, Martin C et al (2010) Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling. J Hydrol 387:176–187. https://doi.org/10.1016/j.jhydrol.2010.04.006
  • 71. Tramblay Y, Bouaicha R, Brocca L et al (2012) Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol Earth Syst Sci 16:4375. https://doi.org/10.5194/hess-16-4375-2012
  • 72. Velázquez JA, Anctil F, Perrin C (2010) Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments. Hydrol Earth Syst Sci 14:2303–2317
  • 73. Verma S, Mishra SK, Singh A et al (2017a) An enhanced SMA based SCS-CN inspired model for watershed runoff prediction. Environ Earth Sci 76:736. https://doi.org/10.1007/s12665-017-7062-2
  • 74. Verma S, Verma RK, Mishra SK et al (2017b) A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation. Hydrol Sci J 62:1891–1930. https://doi.org/10.1080/02626667.2017.1334166
  • 75. Wang L, Wu JQ, Elliot WJ et al (2014) Linear diffusion-wave channel routing using a discrete Hayami convolution method. J Hydrol 509:282–294. https://doi.org/10.1016/j.jhydrol.2013.11.046
  • 76. WMO (2004) Associated program on flood management. Technical Support Unit (ed). Associated Programme on Flood Management Technical Document No. 1, 2nd edn
  • 77. Zema DA, Labate A, Martino D, Zimbone SM (2017) Comparing different infiltration methods of the HEC-HMS model: the case study of the Mésima Torrent (Southern Italy). Land Degrad Dev 28:294–308
  • 78. Zeroual A, Meddi M, Assani AA (2016) Artificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictions. Water Resour Manag 30:3191–3205. https://doi.org/10.1007/s11269-016-1340-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d93e3ded-015c-4018-94c7-75616c5f2aba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.