PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Future benefits offered by smart grids require new energy market development

Identyfikatory
Warianty tytułu
PL
Przyszłe korzyści oferowane przez smart grid wymagają utworzenia nowego rynku energii
Języki publikacji
EN
Abstrakty
EN
Blackouts in the mid-twentieth century in the USA and some European countries implied a necessity of the hierarchical natural monopoly power system (PS) deregulation. The most important target of PS operation is to deliver reliable electric energy (with proper parameters), which implies the necessity to include all existing sources of electrical energy (mostly renewable energy sources – RES) in the power grid. The existing networks could not provide those types of duties hence it was necessary to start with the Smart Grid (SG) idea with new characteristics of the power grid. The rapidly growing number of RES, the ones installed in smart homes in particular, has led to reduced consumption of electricity. This has required a new organization of distribution networks, i.e. development of microgrids and prosumers, changing the static hierarchical information system into a dynamic dispersed electric power system. This consequently implied the need to replace the existing electricity market with a new one. As a result of the electricity and gas system integration, efficiency of the electricity system has increased, however due to different market targets it is necessary to develop a new integrated market. It would also cover smaller energy systems, using such sources as liquid fuel, hot water that potentially could become integral parts of the new integrated market. In the process of building the new integrated energy market it will be necessary to take into account the need for long-term expenses on transmission and distribution networks modernisation applying direct current and using experience of advanced utilities/companies in the U.S.A., Europe, China and some other countries.
PL
Od połowy ubiegłego wieku „blackouty” w USA I niektórych krajach europejskich spowodowały konieczność deregulacji hierarchicznego (wynikającego z naturalnego monopolu) systemu elektroenergetycznego. Zaistniała konieczność dołączenia do sieci eletroenergetycznej wszystkich źródeł tej energii, w tym -źródeł odnawialnej energii (OZE). Istniejące sieci nie były w stanie podjąć się nowych zadań, zaistniała zatem potrzeba budowy nowych „inteligentnych” o nowych właściwościach, nowej organizacji sieci rozdzielczej, w tym mikrosieci, pojawienie się prosumentów, co zmieniło statyczny hierarchiczny system informacyjny w dynamicznie rozproszony system elektroenergetyczny. Integracja systemów elektroenergetycznego i gazowego zwiększyła efektywność elektroenergetyki, ale wymaga utworzenia nowego rynku energii, co jest przedsięwzięciem kosztownym i długotrwałym.
Wydawca
Czasopismo
Rocznik
Tom
Strony
83--86
Opis fizyczny
Bibliogr. 23 poz., fig., tab.
Twórcy
Bibliografia
  • [1] Bloom A., Helman U., Holttinen H., Summers K., Bakke J.,, Brinkman G.,. Lopez A: It’s Indisputable. IEEE Power & Energy, vol. 15, 22-70-82, Nov./Dec.2017.
  • [2] Casey F.,. Beaini S, Pabi S.,. Zammit K,. Amarnath A.: The Tripple Bottom Line for Efficiency, IEEE Power & Energy, vol. 15, 34-42, Jan./Feb. 2017.
  • [3] Chakraborty P., Baeyenes E, Khargonekar P.P.: Cost Causation Based Allocations of Costs for Market Integration of Renewable Energy. IEEE Transactions on Power Systems, vol. 33, 70-83, Jan. 2018.
  • [4] Chen S., Wei Z., Sun G., Cheung Kwok W., Sun Y.: Multi-Linear Probability Energy Flow Analysis of Integrated Electrical and Natural-Gas Systems. IEEE Transactions on Power Systems, vol. 32, 1970-1979, May. 2017. M., q
  • [5] Dall’Anese E., Mancarella P., Monti A.: Unlocking Flexibility. IEEE Power & Energy, vol. 15, pp. 43-52, Jan./Feb. 2017.
  • [6] D’haeseleer W. de Vries., L, Kang H., Delarue E.: Flexibility Challenges for Energy Markets. IEEE Power & Energy, vol. 15, 61-71, Jan./Feb. 2017
  • [7] Ding T.,. Hu Z, BieŁ Y.: Multi-Stage Programming With Nonaniticipativity Constraints for Expansion of Combined Power and Natural Gas System. IEEE Transactions on Power Systems, vol. 33, 317-328, Jan. 2018
  • [8] Ela E., Wang C., Moorty S., Ragsdale K., O’Sullivan J., Rothleder, Hobbs : Electricity Markets and Renewable. IEEE Power & Energy, vol. 15, 70-82, Nov./Dec.2017.
  • [9] Gil M., Dueňas P., Reneses J.: Electricity and Natural Gas Interdependency: Comparison of Two Methodologies for Coupling Large Market Models Within the European Regulatory Framework. IEEE Transactions on Power Systems, vol. 31, 361-369, Jan. 2016.
  • [10] Heinen S., Hewiker Ch., Jenkins N., McCalley J., O’Malley M., Pasini S., Simoncini S.: Unleashing the Flexibility of Gas. IEEE Power & Energy, vol. 15, 16-24, Jan./Feb. 2017.
  • [11] Meegahapola L., Flynn D.: Characterization of Gas Turbine Loan Blowout During Frequency Excursion in Power Networks, IEEE Transactions on Power Systems vol.30, No.4 1877-1667, July 2015.
  • [12] Pereira A.CQuialheiro de Oliveira., A., Baptista E.C., Balbo A.R., Soler E.M., Nepomuceno L., Network Constrained Multiperiod Auction for Pool-Based Electricity Markets of Hydrothermal Systems, IEEE Transactions on Power Systems, vol.32, 4501-4514, Nov. 2017.
  • [13] Qiu J., Dong Z.Y., Zhao J.H., Xu Y., Zheng Y., Li C., Wong H.P,: Multi-Stage Flexible Expansion Co-Planning Under Uncertainties in a Combined Electricity And Gas Market. IEEE Transactions on Power Systems, vol. 30,. 2119-2129 July. 2015.
  • [14] Shao Ch., Shahidehpour M., Wang Y. Wang, B. Wang ;“Integrated Planning of Electricity and Natural Gas Transportation Systems for Enhancing the X Power Grid Resilience. IEEE Transactions on Power Systems, vol.32, 4418-4429, Nov. 2017.
  • [15] Schuitema G, Ryan L., Aravena C.: The Consumer’s Role in Flexible Energy Systems, IEEE Power & Energy, vol. 15, 53-60, Jan./Feb. 2017.
  • [16] Special Section on Frontiers of DC technology. IEEE Transactions on Power Delivery,vol. 33, 259-536 Feb. 2018.
  • [17] Stenclik D., Denholm P., Chalamala B.: Maintaining Balance. IEEE Power & Energy, vol. 15, 31-39, Nov./Dec.2017.
  • [18] Wang Ch., Wei W, Wang J., Liu, F Qiu, C. M.,. Mei S.: Robust Defence Strategy for Gas-Electric Systems Against Malicious Attacks, IEEE Transactions on Power Systems, vol.32, 2953-2965, July 2017.
  • [19] Wang Ch,, Wei W., Wang J., Liu F., Mei S.: Strategic Offering and Equilibrium in Coupled Gas and Electricity Markets. IEEE Transactions on Power Systems, vol. 33,. 290-306, Jan. 2018
  • [20] Xu X., Jia H., Chiang H.-D., Yu D.C.,Wang D.: Dynamic Modeling and Interaction of Hybrid Natural Gas and Electricity Supply System in Microgrid. IEEE Transactions on Power Systems, vol.30, No.3, 1212-1221, May 2015.
  • [21] Zhang X., Shahidehpour M., Alabdulwahb A., Abusorrah A.: Hourly Electricity Demand Response in the Stochastic Day-Ahead Schwduling of Coordinated Electricity and Natural Gas Network. IEEE Transactions on Power Systems vol.31, No.1, 593-601, Jan. 2016.
  • [22] Zhou, Y. Zu Chg.,. Wu H., Song Y.: An Equivalent Model of Gas Networks for Dynamic Analysis of Gas Electricity Systems. IEEE Transactions on Power Systems, vol.32, 4255-4264, Nov. 2017.
  • [23] Zieliński J.S.: Does Smart Grid needs new Informatics Tools?, Przegląd Elektrotechniczny, 4/2018,.30-33.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d93e0b48-2e64-468c-bc90-2261854f7d7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.