Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tetracycline (TC), a commonly utilized drug for human and animal therapy, is one of the most widespread antibiotic residues existing in the environment. The lack of sophisticated techniques for the removal of residual tetracycline from wastewater indicates an actual environmental risk. In this study, three methods for tetracycline removal from synthetic wastewater were utilized. Pillared clay was used as adsorbent (alone) and with coagulant (alum) in a hybrid technique. Coagulation and flocculation technique was the first method. The best operation conditions were alum dose of 2.5 mg/L, pH 7 and tetracycline concentration of 10 mg/L. The second method was the adsorption on Al-Fe pillared clay, the optimum operating conditions were found to be pH 4.5, time 120 minutes, tetracycline dose 90 mg/L, and the amount of Al-Fe pillared clay adsorbent 400 mg/L. In the third method (hybrid method), the optimum conditions for the above methods were used. The highest removal efficiency of tetracycline by using coagulation and flocculation only as a coagulant reached 60%. In turn, by using Al-Fe pillared clay it was 90% and in the case of the hybrid method, it was 94%. Thus, the hybrid technique improves the removal of tetracycline from synthesized wastewater.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
137--148
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, University of Technology, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
autor
- Department of Civil Engineering, University of Technology, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
Bibliografia
- 1. Al Ani F., AL-Kindi G., Al-Bidri N. 2019. Diclofenac Removal from Wastewater by Iraqi Pillared Clay. Engineering and Technology Journal, 37, 281–288.
- 2. Al Aukidy M., Verlicchi P., Voulvoulis N. 2014. A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Science of the Total Environment, 493, 54–64.
- 3. AL-Kindi G., Hussam A. 2021 The Removal of Ibuprofen Drugs Residues from Municipal Wastewater by Moringa Oleifera Seeds. Journal of Ecological Engineering, 22, 83–94.
- 4. Boxali A., Kolpin W., Halling B., Tolls J. 2003. Are veterinary medicines causing environmental risks? Environ. Sci. Technol., 37, 286A–294A.
- 5. Cheknane B., Michel B., Jean-Philippe B., Omar B. 2010. Adsorption of basic dyes in single and mixture systems on granular inorganic-organic pillared clays. Environmental Technology, 31(7), 815–822.
- 6. Gil A., Assis F.C.C.,, Albeniz S., Korili S.A. 2011. Removal of dyes from wastewaters by adsorption on Pillared clays. Chem. Eng. J., 168, 1032–1040.
- 7. Ho Y.S., McKay G., Wase D.A.J., Foster C.F. 2000. Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol, 18, 639–650.
- 8. Hou M., Ma C., Zhang W., Tang X., Fan Y., Wan H. 2011. Removal of rhodamine B using iron-pillared bentonite. J. Hazard. Mater., 186, 1118–1123.
- 9. Hou M., Ma C., Zhang W., Tang X., Fan Y., Wan H. 2011. Removal of rhodamine B using iron-pillared bentonite. J. Hazard. Mater, 186, 1118–1123.
- 10. International Center for Difraction Data. 1990. Joint Committee on Powder Difraction Standards, Powder Difraction Data, Swarthmore (PA).
- 11. Jannat M., Abadi S., Nouri R., Zhiani, H. Heydarzadeh, Motavalizadehkakhky A. 2019. Removal of tetracycline from aqueous solution using Fe-doped zeolite” International Journal of Industrial Chemistry, 10, 291–300.
- 12. Joel B. 2000. Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays. Applied Catalysis B: Environmental, 27(4), L225–L230.
- 13. Kadhum S., Alkindi G., Albayati T. 2021. Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea biowaste and supported on silty clay. Chinese Journal of Chemical Engineering, 36, 19–28.
- 14. Kadhum S., Alkindi G., Albayati T. 2021. Determination of chemical oxygen demand for phenolic compounds from oil refinery wastewater implementing different methods. Desalination and Water Treatment, 231, 44–53.
- 15. Kalavathy M., Miranda R. 2010. Comparison of Copper Adsorption from Aqueous Solution Using Modified and Unmodified Hevea brasiliensis Saw Dust. Desalination, 255, 165–174.
- 16. Khan S., Ongerth J. 2004. Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations. Chemosphere, 54, 355–367.
- 17. Kimura K., Hara H., Watanabe Y. 2007. Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environ. Sci. Technol., 41, 3708–3714.
- 18. Kumar A., Mohan M., Mahapatra, Kumar P.J. 2012. Fabrication and Characterizations of Mechanical Properties of Al-4.5%Cu/10TiC Composite by In-Situ Method. Journal of Minerals and Materials Characterization and Engineering, 2012, 11, 1075–1080.
- 19. Lúcia S., Araújo A., Adriano F., Pena A. 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175, 45–95.
- 20. Mabrouki H., Akretche D. 2016. Diclofenac potassium removal from water by adsorption on natural and Pillared Clay. Desalin. Water Treat., 57, 6033–6043.
- 21. Marco-Brown J., Carlos M., Rosa M., Torres S., Maria D. 2012. Adsorption of picloram herbicide on iron oxide pillared montmorillonite. Applied Clay Science, 58, 25–33.
- 22. Mayerly J., Eder C., Bianca M., Dimitrius D., Eduardo M. 2018. A coagulation-flocculation process combined with adsorption using activated carbon obtained from sludge for dye removal from tannery wastewater. J. Chil. Chem. Soc., 63,
- 23. Nicoleta P., Ana-Maria R., Vasilica A., Denisa I., Ilia S. 2013. Chemically modified clays used for environmental quality. Journal of Engineering Studies and Research, 19, 52–58.
- 24. Okuda T., et al. 2001. Isolation and Characterization of Coagulant Extracted from Moringa oleifera Seed by Salt Solution. Water Research, 35, 405–410.
- 25. Pan S., Zhu M., Chen JP., Yuan Z., Zhong L., Zheng Y. 2015. Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane—implications for antibiotics recovery. Sep Purif Technol, 153, 76–83.
- 26. Poppe L.J., Paskevich V.F., Hathaway J.C., and Blackwood D.S. 2002. A Laboratory Manual for X-Ray Powder Diffraction, USGS U.S. Geological Survey. Open-File Report, 1–41.
- 27. Qingdong Q., Xian W., Liwei C., Zhongshuai J., Yan X. 2018. Simultaneous removal of tetracycline and Cu(ii) by adsorption and coadsorption using oxidized activated carbon. RSC Advances, 8(4), 1744–1752.
- 28. Quesada I., Julcour C., Jáuregui U.J., Wilhelm A.M., Delmas H. 2009. Comparative adsorption of levodopa from aqueous solution on different activated carbons. Chemical Engineering Journal, 152(1), 183–188.
- 29. Rayaroth M., Aravind U.K., Aravindakumar C. 2016. Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environ Chem Lett, 14(3), 259–290.
- 30. Roca J., Miria B., Karim S. 2017. Removal of Ciprofloxacin from Aqueous Solutions Using Pillared Clays. Material, 10, 1345.
- 31. Šćiban M., Klašnja M., Antov M., Škrbić B. 2009. Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresource Technol, 100, 6639–6643.
- 32. Sergio M., Musso M., Medina J., Diano W. 2006. Aluminum-Pillaring of a Montmorillonitic Clay: Textural Properties as a Function of the Starting Mineral Particle Size. A Zojomo, 2,
- 33. Tonghao L., Yanhui L., Qiuju D., Jiankun S., Yuqin J., Guangming Y., Zonghua W., Yanzhi X., Wei Z., Kunlin W., Hongwei Z., Dehai W. 2012. Colloids Surf., B: Bio Interfaces, 90, 197
- 34. Tran N., Hoang L., L.D. Nghiem N., Ngo H., Guo W., Trinh Q.T., Mai N.H., Chen H., Nguyen D., Ta T., K.Y.H. 2019. Gin Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi Vietnam Sci. Total Environ., 692, 157–174.
- 35. Utrilla J., Sánchez-Polo M., Ferro-García M., PradosJoya G., Ocampo-Pérez R. 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268–1287.
- 36. Vona A., Martino F., Garcia-Ivars J., Picó Y., MendozaRoca J.A., IborraClar M.I. 2015. Comparison of different removal techniques for selected pharmaceuticals. Journal of Water Process Engineering, 5, 48–57.
- 37. Wang F., Wang H., Jian W. 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-bamboo charcoal. J Hazard Mater, 177, 300–306.
- 38. Wu C., Xiaolong H., Jason D., Alison L., Wang K., Wang D., Jiantong L. 2014. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze River, China. Ecotoxicology and Environmental Safety, 106, 19–26.
- 39. Yanting W., Shengying G., Yazhuo L., Zhang L., Jie F. 2020. Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust. Scientific Reports, 10, 2960.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d93c75d2-e077-48a8-b635-6ee443563a87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.