PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and Improvement of an Industrial Process of Hot Die Forging of an Elongated Forging Tipped with a Joggle with the Use of Numerical Simulation Results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article performs an analysis of a hot die forging process of producing an elongated forging ended with a joggle in a double system realized on a crank press Masey 1300 t, in open dies, in 3 operations. The thermomechanical model of the forging process considering the changes in the grain size and the forging material recrystallization was elaborated with the use of the calculation packet Qform 7. In the first place, an in-depth analysis of the currently realized forging technology was made, with a special consideration of the temperature changes in the tools as well as in the formed forging. Next, numerical modelling of the process was carried out, as a result of which the following were obtained: correct filling of the tool impressions by the deformed material, the temperature distributions for the forging and the tools, the plastic deformation distributions (considering the thermally activated phenomena), the changes in the grain size and the forging force courses. The results obtained from FEM enable a thorough analysis of the forging process, including: the effect of the deformation time and temperature on the grain size in the forging material, which was confirmed by the microstructure examination results.
Twórcy
  • Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
Bibliografia
  • 1. Altan T. Cold and hot forging fundamentals and application. Ohio. ASM Internation. 2005.
  • 2. Gronostajski Z., Hawryluk M. The main aspects of precision forging. Archives of Civil and Mechanical Engineering 2008; 8(2): 39–5
  • 3. Banaszek G, Stefanik A. Theoretical and laboratory modelling of the closure of metallurgical defects during forming of a forging. Journal of Materials Processing Technology2006;177(1–3): 238–242.
  • 4. ISO 10360-4:2000 Geometrical product specifications (GPS) – acceptance and reverification tests for coordinate measuring machines (CMM) –Part 4: CMMs used in Scanning Measuring Mode. 2000.
  • 5. Dieter G., E., Kuhn H., A., Semiatin S., L. Handbook of workability and process design. Materials Park. ASM International, 2003.
  • 6. Jolgaf M., Hamouda A., Sulaiman S., Hamdan M., M. Development of a CAD/CAM system for the closed-die forging process. Journal of Materials Processing Technology 2003; 138(1–3): 436–442.
  • 7. Srinivasan N., Ramakrishnan N., Venugopal Rao A., Swamy N. CAE for forging of titanium alloy aero-engine disc and integration with CAD–CAM for fabrication of the dies. Journal of Materials Processing Technology 2002; 124(3): 353–9.
  • 8. Li SY., Cheng SY. Design optimization for cold forging by an integrated methodology of CAD/FEM/ANN. Advanced Materials Research 2010; 97–101: 3281-3284.
  • 9. Neugebauer R., Bräunlich H., Scheffler S. Process monitoring and closed loop-controlled process. Archives of Civil and Mechanical Engineering 2009; 9(2): 105–26.
  • 10. Wilby AJ, Neale DP. Defects Introduced into Metals during Fabrication and Service. Materials Science and Engineering 2009; 3: 48–75.
  • 11. Hawryluk M., Ziemba J., Zwierzchowski M., Janik M. Analysis of a forging die wear by 3D reverse scanning combined with SEM and hardness tests. Wear 2021; 476, 203749.
  • 12. Park J.J., Rebelo N., Kobayashi S. A new approach to preform design in metal forming with the finite element method. International Journal of Machine Tool Design and Research1983; 23(1): 71–92.
  • 13. Hawryluk M, Ziemba J. Application of the 3D reverse scanning method in the analysis of tool wear and forging defects. Measurement 2018; 128: 204–13.
  • 14. Xu Y., Zhang Y., Zhuang X., Cao Z.., Lu Y, Zhao Z. Numerical modeling and anvil design of high-speed forging process for railway axles. International Journal Material Forming 2021; 14(5): 813–32.
  • 15. Sedighi M., Tokmechi S. A new approach to preform design in forging process of complex parts. Journal of Materials Processing Technology 2008; 197(1–3): 314–324.
  • 16. Lee S., et all. A New Approach to preform design in metal forging processes based on the convolution neural network 2021. Applied Sciences 11(17): 1-18, 7948.
  • 17. Venet G., Baudouin C.., Pondaven C, Bigot R., Balan T. Parameter identification of 42CrMo4 steel hot forging plastic flow behaviour using industrial upsetting presses and finite element simulations. International Journal Material Forming 2021; 14(5):929–945.
  • 18. Bouissa Y., Bohlooli N., Shahriari D. Champliaud H, Morin J., B., Jahazi M. FEM modeling and experimental validation of quench-induced distortions of large size steel forgings. Journal of Manufacturing Processes 2020; 58: 592–605.
  • 19. Krishna R.H., Jena D., P. Analytical and numerical modelling of open-die forging process for elliptical cross-section of billet. Measurement 2019; 134: 855–865.
  • 20. Kawka M., Kakita T., Makinouchi A. Simulation of multi-step sheet metal forming processes by a static explicit FEM code. Journal of Materials Processing Technology 1998; 80–81: 54–59.
  • 21. Hawryluk M., Rychlik M., Ziemba J., Jasiak K., Lewandowski F., Dudkiewicz Ł. Analysis of the production process of the forked forging used in the excavator drive system in order to improve the currently implemented technology by the use of numerical modeling. Materials Science-Poland 2021; 39(2): 227–39.
  • 22. Hawryluk M., Rychlik M., Więcław M., Jabłoński P. Analysis of the industrial process of producing a hub forging used in motorcar power transmission systems – A case study. JMMP 2021; 5(2): 32-39.
  • 23. Szota P., Mróz S., Gontarz A., Stefanik A. Theoretical and experimental analysis of Mg/Al bimetallic handle forging proces. Archives of Metallurgy and Materials 2019; 64(4):1503–1512.
  • 24. Samołyk G. Numerical analysis of a forging process for producing a hollow ball from tube. Adv. Sci. Technol. Res. J. 2018; 12(3):150–157.
  • 25. Winiarski G., Bulzak T., Wójcik Ł., Szala M. Numerical analysis of a six stage forging process for producing hollow flanged parts from tubular blanks. Adv Sci Technol Res J. 2020; 14(1): 201–208.
  • 26. Yu Z, Chen M, Ma C, Luo S, Zhu C. Numerical model simulation of the double-roll rotary forging of large diameter thin-walled disk. Metals 2021; 11(11): 1767.
  • 27. Forge 2011 Documentation - Datafile Forge 3v75 [Internet]. Transvalor. Available from: http://www.transvalor.com/en/cmspages/forge-nxt.32.html.
  • 28. Qform 3D - Software for simulation and optimization of metal forming processes and metal profile extrusion [Internet]. Qform. Available from: http://www.qform3d.com.
  • 29. Simufact forming [Internet]. Hexagon. Available from: https://www.simufact.com/simufactformingforming-simulation.html
  • 30. SFTC. DEFORM-3D [Internet]. Scientific Forming Technologies Corporation. Available from: https://www.deform.com/products/deform-3d/.
  • 31. Gronostajski Z., et al. The expert system supporting the assessment of the durability of forging tools. Int J Adv Manuf Technol. 2016; 82(9–12): 1973–91.
  • 32. Yu T. T., Gong Z., W. Numerical simulation of temperature field in heterogeneous material with the XFEM. Archives of Civil and Mechanical Engineering 2013; 13(2): 199–208.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d933c509-805b-41f7-8d6c-d75f5406fdb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.